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Limitations of Classical Planning

timetable for astronauts on ISS

concurrency required for some experiments

optimize makespan
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Generalization of Classical Planning: Temporal Planning

timetable for astronauts on ISS

concurrency required for some experiments

optimize makespan
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Limitations of Classical Planning

kinematics of robotic arm

state space is continuous

preconditions and effects described by complex functions
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Generalization of Classical Planning: Numeric Planning

kinematics of robotic arm

state space is continuous

preconditions and effects described by complex functions



Motivation Markov Decision Process Stochastic Shortest Path Problem Summary

Limitations of Classical Planning
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Generalization of Classical Planning: MDPs
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Limitations of Classical Planning

Chess

there is an opponent with a contradictory objective
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Generalization of Classical Planning: Multiplayer Games

Chess

there is an opponent with a contradictory objective
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Limitations of Classical Planning

Solitaire

some state information cannot be observed

must reason over belief for good behaviour
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Generalization of Classical Planning: POMDPs

Solitaire

some state information cannot be observed

must reason over belief for good behaviour
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Limitations of Classical Planning

many applications are combinations of these

all of these are active research areas

we focus on one of them:
probabilistic planning with Markov decision processes

MDPs are closely related to games (Why?)
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Content of this Course: Explicit MDPs

Explicit MDPs

Foundations

Linear
Programing

Policy
Iteration

Value
Iteration



Motivation Markov Decision Process Stochastic Shortest Path Problem Summary

Markov Decision Process
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Markov Decision Processes

Markov decision processes (MDPs) studied since the 1950s

Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs ( Part F)

Today, focus on large, factored MDPs ( Part G)

Fundamental datastructure for reinforcement learning
(not covered in this course)

and for probabilistic planning

different variants exist
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Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = 〈S , L, c ,T , s0, S?〉 where

S is a finite set of states,

L is a finite set of (transition) labels,

c : L→ R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S? ⊆ S is the set of goal states.

→ goal states and deterministic transition function
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Markov Decision Process

Definition (Markov Decision Process)

A (discounted reward) Markov decision process (MDP) is a 6-tuple
T = 〈S ,A,R,T , s0, γ〉, where

S is a finite set of states,

A is a finite set of actions,

R : S × A→ R is the reward function,

T : S × A× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

γ ∈ (0, 1) is the discount factor.

For all s ∈ S and a ∈ A with T (s, a, s ′) > 0 for some s ′ ∈ S ,
we require

∑
s′∈S T (s, a, s ′) = 1.
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Reward instead of Goal States

the agent does not try to reach a goal state but gets a
(positive or negative) reward for each action application.

infinite horizon: agent acts forever

finite horizon: agent acts for a specified number of steps

we only consider the variant with an infinite horizon

immediate reward is worth more than later reward

as in economic investments
ensures that our algorithms will converge

the value of a reward decays exponentially with γ

now full value r , in next step γr , in two steps only γ2r , . . .

aim: maximize expected overall reward
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Markov Property

Why is this called a Markov decision process?

Russian mathematician
Andrey Markov (1856–1922)

Markov property: the probability distribution for the next state
only depends on the current state (and the action) but not on
previously visited states or earlier actions.
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Example: Grid World
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moving north goes east with probability 0.4

only applicable action in (4,2) and (4,3) is collect, which
sets position back to (1,1)
gives reward of +1 in (4,3)
gives reward of −1 in (4,2)
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Solutions in MDPs

classical planning

a solution is a sequence of operators
next state always clear
at the end we are in a goal state

MDP

next state uncertain
we cannot know in advance what actions will be applicable in
the encountered state
infinite horizon: act forever
→ sequence of operators does not work
→ policy: specify for each state the action to take
→ at least for all states which we can potentially reach
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Terminology (1)

If p := T (s, a, s ′) > 0, we write s
p:a−−→ s ′

(or s
p−→ s ′ if a is not relevant).

If T (s, a, s ′) = 1, we also write s
a−→ s ′ or s → s ′.

If T (s, a, s ′) > 0 for some s ′ we say that a is applicable in s.

The set of applicable actions in s is A(s). We assume that
A(s) 6= ∅ for all s ∈ S .
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Terminology (2)

the successor set of s and a is
succ(s, a) = {s ′ ∈ S | T (s, a, s ′) > 0}.
s ′ is a successor of s if s ′ ∈ succ(s, a) for some a.

to indicate that s ′ is a successor of s and a
that is sampled according to probability distribution T ,
we write s ′ ∼ succ(s, a)
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Policy for MDPs

Definition (Policy for MDPs)

Let T = 〈S ,A,R,T , s0, γ〉 be a (discounted-reward) MDP.
Let π be a mapping π : S → A∪ {⊥} such that π(s) ∈ A(s)∪ {⊥}
for all s ∈ S .

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

s ∈ Sπ(s) and

succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s0), then π is a policy for T .
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Example: Grid World
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moving north goes east with probability 0.4

only applicable action in (4,2) and (4,3) is collect, which
sets position back to (1,1)
gives reward of +1 in (4,3)
gives reward of −1 in (4,2)
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Stochastic Shortest Path Problem
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I Want My Goal States Back!

We also consider a variant of MDPs that are not
discounted-reward MDPs.

Stochastic Shortest Path Problems (SSPs) are closer to
classical planning.

goal states
but still stochastic transition function

We will use the same concepts for SSPs as for
discounted-reward MDPs (e.g. policies)
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Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T = 〈S ,A, c ,T , s0,S?〉, where

S is a finite set of states,

A is a finite set of actions,

c : A→ R+
0 is an action cost function,

T : S × A× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

S? ⊆ S is the set of goal states.

For all s ∈ S and a ∈ A with T (s, a, s ′) > 0 for some s ′ ∈ S ,
we require

∑
s′∈S T (s, a, s ′) = 1.

Note: An SSP is the probabilistic pendant of a transition system.
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Transition System Example

LR

LL TL

RL

TR RR

Logistics problem with one package, one truck, two locations:

location of package: domain {L,R,T}
location of truck: domain {L,R}
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SSP Example

LR

LL TL

RL

TR RR

.8.2

.8

.2
Logistics problem with one package, one truck, two locations:

location of package: {L,R,T}
location of truck: {L,R}
if truck moves with package, 20% chance of losing package
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Solutions in Transition Systems

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

in a deterministic transition system a solution is a plan, i.e.,
a sequence of operators that leads from s0 to some s? ∈ S?

an optimal solution is a cheapest possible plan

a deterministic agent that executes a plan will reach the goal
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Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

.8.2

can’t drop!

.8

.2

the same plan does not always work for the probabilistic agent
(not reaching the goal or not being able to execute the plan)

non-determinism can lead to a different outcome than
anticipated in the plan

need again a policy
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Solutions in SSPs

LR

move-L

LL

pickup

TL

move-R

RL

TR

drop

RR

move-L, pickup, move-R, drop

.8.2

.8

.2
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Policy for SSPs

Definition (Policy for SSPs)

Let T = 〈S ,A, c ,T , s0, S?〉 be an SSP.
Let π be a mapping π : S → A∪ {⊥} such that π(s) ∈ A(s)∪ {⊥}
for all s ∈ S .

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

s ∈ Sπ(s) and

succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) \S? where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s0) \ S?, then π is a policy for T .
If the probability to eventually reach a goal is 1 for all s ′ ∈ Sπ(s0)
then π is a proper policy for T .
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Additional Requirements for SSPs

We make two requirements for SSPs:

There is a proper policy.
Every improper policy incurs infinite cost from every reachable
state from which it does not reach a goal with probability 1.

We will only consider SSPs that satisfy these requirements.

What does this mean in practise?

no unavoidable dead ends
no cost-free cyclic behaviour possible

With these requirements every cost-minimizing policy is a
proper policy.
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Summary
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Summary

There are many planning scenarios beyond classical planning.

For the rest of the course we consider probabilistic planning.

(Discounted-reward) MDPs allow state-dependent rewards
that are discounted over an infinite horizon

SSPs are transition systems with a probabilistic transition
relation.

Solutions of SSPs and MDPs are policies.

For MDPs we want to maximize the expected reward,
for SSPs we want to minimize the expected cost.
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