Planning and Optimization E5. Cost Partitioning

Malte Helmert and Gabriele Röger

Universität Basel

November 23, 2020

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

November 23, 2020

Planning and Optimization

November 23, 2020 — E5. Cost Partitioning

- E5.1 Introduction
- E5.2 Cost Partitioning
- E5.3 Saturated Cost Partitioning
- E5.4 Summary

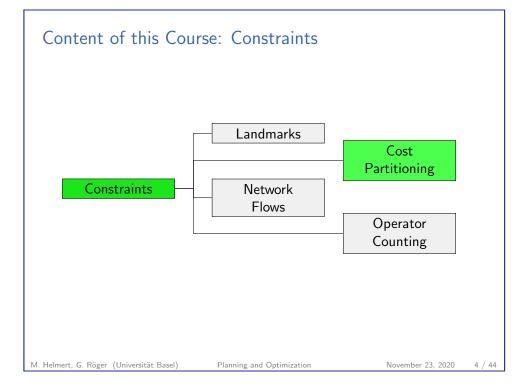
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

Content of this Course Foundations Logic Classical Heuristics Constraints Planning Explicit MDPs Probabilistic Factored MDPs

Planning and Optimization



E5. Cost Partitioning Introduction

E5.1 Introduction

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

E5. Cost Partitioning

Introduction

Exploiting Additivity

- Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- ▶ For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

E5. Cost Partitioning Introduction

Additivity

When is it impossible to sum up abstraction heuristics admissibly?

- ▶ Abstraction heuristics are consistent and goal-aware.
- ▶ Sum of goal-aware heuristics is goal aware.
- ▶ ⇒ Sum of consistent heuristics not necessarily consistent.

E5. Cost Partitioning

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with $V = \{v_1, v_2, v_3\}$ with $dom(v_1) = \{A, B\}$ and $dom(v_2) = dom(v_3) = \{A, B, C\}, I = \{v_1 \mapsto A, v_2 \mapsto A, v_3 \mapsto A\}.$

$$o_1 = \langle v_1 = \mathsf{A}, v_1 := \mathsf{B}, 1 \rangle$$

$$o_2 = \langle v_2 = \mathsf{A} \wedge v_3 = \mathsf{A}, v_2 := \mathsf{B} \wedge v_3 := \mathsf{B}, 1 \rangle$$

$$o_3 = \langle v_2 = \mathsf{B}, v_2 := \mathsf{C}, 1 \rangle$$

$$o_4 = \langle v_3 = \mathsf{B}, v_3 := \mathsf{C}, 1 \rangle$$

and
$$\gamma = (v_1 = B) \land (v_2 = C) \land (v_3 = C)$$
.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

E5. Cost Partitioning

Combining Heuristics Admissibly: Example

Let $h = h_1 + h_2 + h_3$. Where is consistency constraint violated? o_2, o_3, o_4 o_2, o_3, o_4 o_1, o_4

03

04

Consider solution $\langle o_1, o_2, o_3, o_4 \rangle$

 o_1, o_3

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

9 / 44

E5. Cost Partitioning Introduction

Solution: Cost partitioning

h is not admissible because $cost(o_2)$ is considered in h_2 and h_3 ls there anything we can do about this?

Solution 1:

We can ignore the cost of o_2 in h_2 or h_3 by setting its cost to 0.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

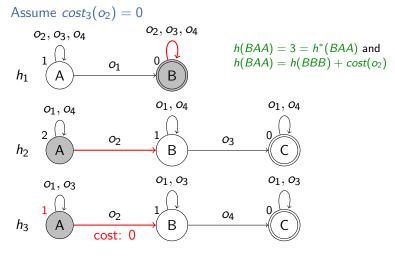
November 23, 2020

10 / 4

Introduction

E5. Cost Partitioning Introduction

Combining Heuristics Admissibly: Example



Consider solution $\langle o_1, o_2, o_3, o_4 \rangle$

Planning and Optimization

November 23, 2020 11 /

E5. Cost Partitioning

Solution: Cost partitioning

h is not admissible because $cost(o_2)$ is considered in h_2 and h_3 Is there anything we can do about this?

Solution 1:

We can ignore the cost of o_2 in h_2 or h_3 by setting its cost to 0. This is called a zero-one cost partitioning.

Solution 2: Consider a cost of $\frac{1}{2}$ for o_2 both in h_2 and h_3 .

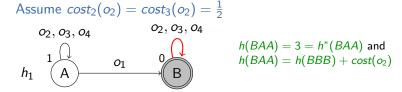
M. Helmert, G. Röger (Universität Basel)

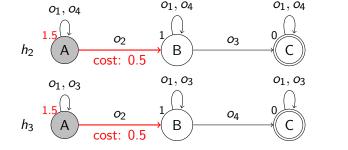
Planning and Optimization

November 23, 2020

E5. Cost Partitioning

Combining Heuristics Admissibly: Example





Consider solution $\langle o_1, o_2, o_3, o_4 \rangle$

M. Helmert, G. Röger (Universität Basel)

E5. Cost Partitioning

Planning and Optimization

November 23, 2020

November 23, 2020

Cost Partitioning

E5.2 Cost Partitioning

E5. Cost Partitioning Introduction

Solution: Cost partitioning

h is not admissible because $cost(o_2)$ is considered in h_2 and h_3

Is there anything we can do about this?

Solution 1:

We can ignore the cost of o_2 in h_2 or h_3 by setting its cost to 0. This is called a zero-one cost partitioning.

Solution 2: Consider a cost of $\frac{1}{2}$ for o_2 both in h_2 and h_3 . This is called a uniform cost partitioning.

General solution: satisfy cost partitioning constraint

$$\sum_{i=1}^{n} cost_{i}(o) \leq cost(o) \text{ for all } o \in O$$

What about o_1 , o_3 and o_4 ?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

E5. Cost Partitioning

Cost Partitioning

Cost Partitioning

Definition (Cost Partitioning)

Let Π be a planning task with operators O.

A cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

- $ightharpoonup cost_i: O \to \mathbb{R}_0^+ \text{ for } 1 \leq i \leq n \text{ and }$
- $ightharpoonup \sum_{i=1}^n cost_i(o) \le cost(o)$ for all $o \in O$.

The cost partitioning induces a tuple $\langle \Pi_1, \dots, \Pi_n \rangle$ of planning tasks, where each Π_i is identical to Π except that the cost of each operator o is $cost_i(o)$.

M. Helmert, G. Röger (Universität Basel)

E5. Cost Partitioning

ost Partitioning

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_{i}}^{*} \leq h_{\Pi}^{*}$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

17 / 44

E5. Cost Partitioning

Cost Partitioning

Cost Partitioning: Admissibility (2)

Proof of Theorem.

If there is no plan for state s of Π , both sides are ∞ . Otherwise, let $\pi = \langle o_1, \dots, o_m \rangle$ be an optimal plan for state s of Π . Then

$$\sum_{i=1}^{n} h_{\Pi_{i}}^{*}(s) \leq \sum_{i=1}^{n} \sum_{j=1}^{m} cost_{i}(o_{j})$$
 (π plan in each Π_{i})
$$= \sum_{j=1}^{m} \sum_{i=1}^{n} cost_{i}(o_{j})$$
 (comm./ass. of sum)
$$\leq \sum_{j=1}^{m} cost(o_{j})$$
 (cost partitioning)
$$= h_{\Pi}^{*}(s)$$
 (π optimal plan in Π)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

E5. Cost Partitioning

Cost Partitioning

Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write h_{Π} to denote heuristic h evaluated on task Π .

Corollary (Sum of Admissible Estimates is Admissible)

Let Π be a planning task and let $\langle \Pi_1, \dots, \Pi_n \rangle$ be induced by a cost partitioning.

For admissible heuristics h_1, \ldots, h_n , the sum $h(s) = \sum_{i=1}^n h_{i,\Pi_i}(s)$ is an admissible estimate for s in Π .

E5. Cost Partitionin

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let Π be a planning task and let $\langle \Pi_1, \dots, \Pi_n \rangle$ be induced by a cost partitioning $\langle cost_1, \dots, cost_n \rangle$.

If h_1, \ldots, h_n are consistent heuristics then $h = \sum_{i=1}^n h_{i,\Pi_i}$ is a consistent heuristic for Π .

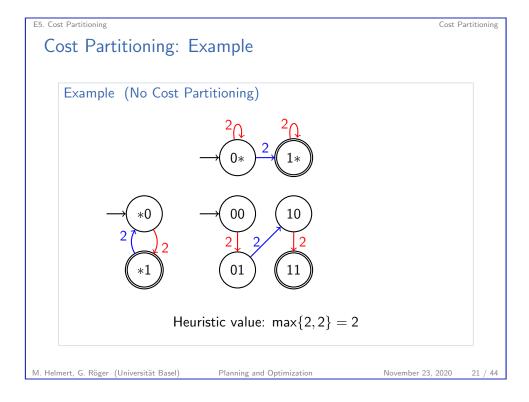
Proof.

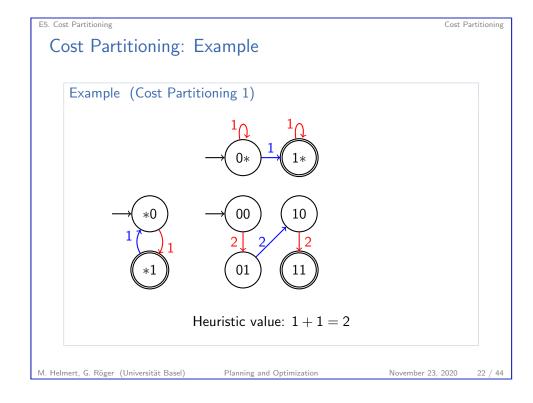
Let o be an operator that is applicable in state s.

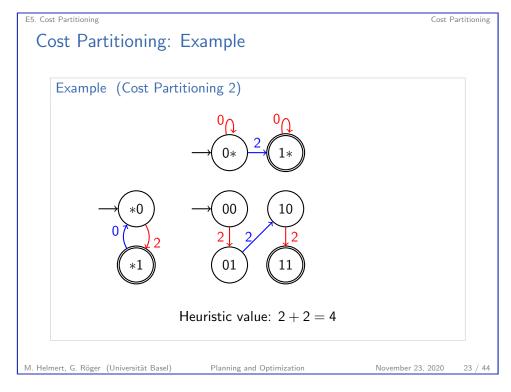
$$egin{aligned} h(s) &= \sum_{i=1}^n h_{i,\Pi_i}(s) \leq \sum_{i=1}^n (cost_i(o) + h_{i,\Pi_i}(s\llbracket o
rbracket)) \ &= \sum_{i=1}^n cost_i(o) + \sum_{i=1}^n h_{i,\Pi_i}(s\llbracket o
rbracket) \leq cost(o) + h(s\llbracket o
rbracket) \end{aligned}$$

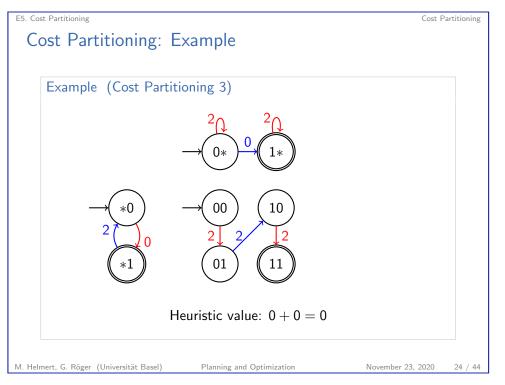
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization









E5. Cost Partitioning Cost Partitioning

Cost Partitioning: Quality

- ► $h(s) = h_{1,\Pi_1}(s) + \cdots + h_{n,\Pi_n}(s)$ can be better or worse than any $h_{i,\Pi}(s)$ \rightarrow depending on cost partitioning
- strategies for defining cost-functions
 - uniform
 - zero-one
 - saturated (now)
 - optimal (next chapter)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

25 / 44

E5. Cost Partitioning Saturated Cost Partitioning

E5.3 Saturated Cost Partitioning

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

26 / 44

E5. Cost Partitioning

Saturated Cost Partitioning

Idea

Heuristics do not always "need" all operator costs

- ► Pick a heuristic and use minimum costs preserving all estimates
- Continue with remaining cost until all heuristics were picked

Saturated cost partitioning (SCP) currently offers the best tradeoff between computation time and heuristic guidance in practice.

E5. Cost Partitioning

Saturated Cost Partitioning

Saturated Cost Function

Definition (Saturated Cost Function)

Let Π be a planning task and h be a heuristic.

A cost function scf is saturated for h and cost if

- ② $h_{\Pi_{\text{scf}}}(s) = h_{\Pi}(s)$ for all states s, where Π_{scf} is Π with cost function scf.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 23, 2020 27

Planning and Optimization

November 23, 2020

Saturated Cost Partitioning

Minimal Saturated Cost Function

For abstractions, there exists a unique minimal saturated cost function (MSCF).

Definition (MSCF for Abstractions)

Let Π be a planning task and α be an abstraction for Π . The minimal saturated cost function for α is

$$\mathsf{mscf}(o) = \max_{\alpha(s) \stackrel{o}{\longrightarrow} \alpha(t)} \mathsf{max} \{ h^{\alpha}(s) - h^{\alpha}(t), 0 \}$$

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

29 / 44

E5. Cost Partitioning

Saturated Cost Partitioning

Algorithm

Saturated Cost Partitioning: Seipp & Helmert (2014)

Iterate:

- **①** Pick a heuristic h_i that hasn't been picked before. Terminate if none is left.
- 2 Compute *h_i* given current *cost*
- 3 Compute minimal saturated cost function $mscf_i$ for h_i
- Decrease cost(o) by $mscf_i(o)$ for all operators o

 $\langle \mathsf{mscf}_1, \dots, \mathsf{mscf}_n \rangle$ is saturated cost partitioning (SCP) for $\langle h_1, \dots, h_n \rangle$ (in pick order)

M. Helmert, G. Röger (Universität Basel)

E5. Cost Partitioning

Planning and Optimization

November 23, 2020

Saturated Cost Partitioning

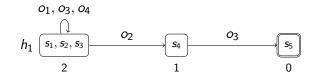
E5. Cost Partitioning

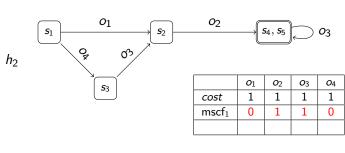
Saturated Cost Partitioning

Example

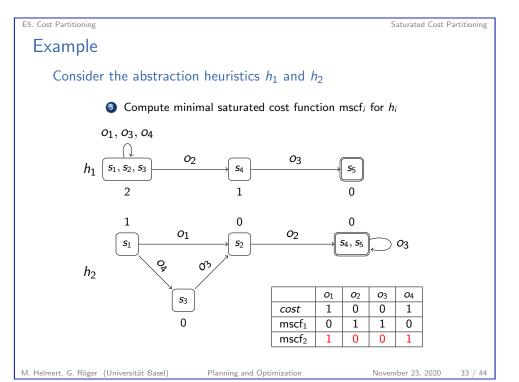
Consider the abstraction heuristics h_1 and h_2

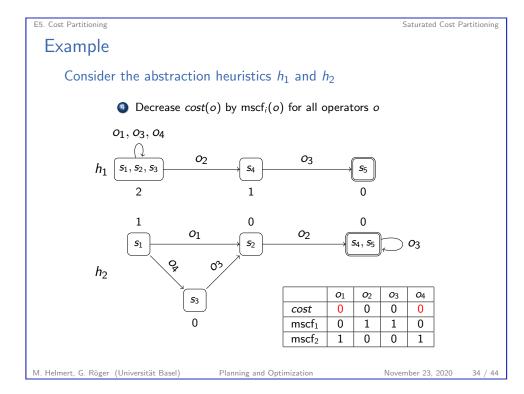
3 Compute minimal saturated cost function mscf_i for h_i

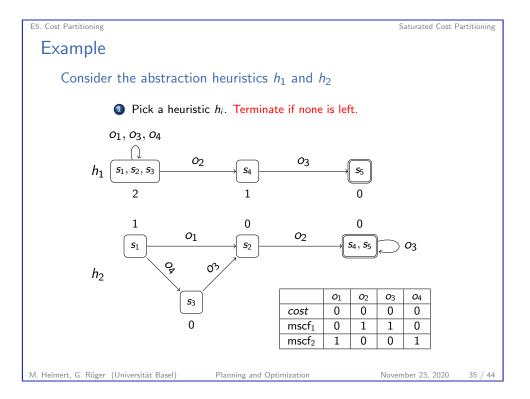




Consider the abstraction heuristics h_1 and h_2 Decrease cost(o) by $mscf_i(o)$ for all operators o o_1, o_3, o_4 h_1 s_1, s_2, s_3 o_2 s_4 o_3 o_4 o_5 o_5







E5. Cost Partitioning Saturated Cost Partitioning

Influence of Selected Order

- quality highly susceptible to selected order
- ► there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- ▶ but there are also often orders where SCP performs worse

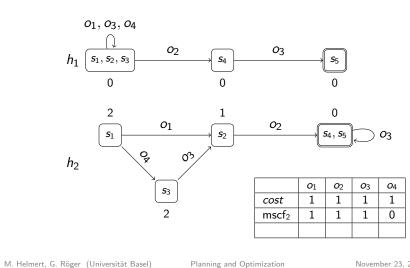
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

Saturated Cost Partitioning: Order

Consider the abstraction heuristics h_1 and h_2



E5. Cost Partitioning

Planning and Optimization

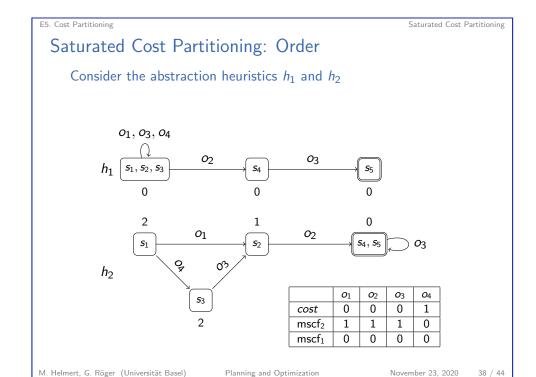
November 23, 2020

E5. Cost Partitioning Saturated Cost Partitioning

Influence of Selected Order

- quality highly susceptible to selected order
- ▶ there are almost always orders where SCP performs much better than uniform or zero-one cost partitioning
- but there are also often orders where SCP performs worse

Maximizing over multiple orders good solution in practice



E5. Cost Partitioning

Saturated Cost Partitioning

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks, where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and \mathcal{L} be a disjunctive action landmark. The minimal saturated cost function for \mathcal{L} is

$$\mathsf{mscf}(o) = egin{cases} \mathsf{min}_{o \in \mathcal{L}} \mathit{cost}(o) & \mathsf{if} \ o \in \mathcal{L} \\ 0 & \mathsf{otherwise} \end{cases}$$

Does this look familiar?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

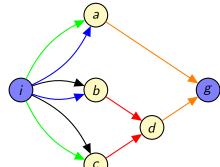
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Saturated Cost Partitioning E5. Cost Partitioning

Reminder: LM-Cut

E5. Cost Partitioning



<i>O</i> blue	=	$(\{i\}, \{a, b\}, \{\}, 4\})$
O green	=	$\{\{i\}, \{a, c\}, \{\}, 5\}$

$$o_{\mathsf{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$$

$$o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle$$

$$o_{\mathsf{orange}} = \langle \{a,d\}, \{g\}, \{\}, 0 \rangle$$

round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost	
1	d	b	{o _{red} }	2	
2	a	b	{o _{green} , o _{blue} }	4	
3	d	С	$\{o_{green}, o_{black}\}$	1	
$h^{LM-cut}(I)$					

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

41 / 44

E5. Cost Partitioning Summary

E5.4 Summary

SCP for Disjunctive Action Landmarks

Same algorithm can be used for disjunctive action landmarks, where we also have a minimal saturated cost function.

Definition (MSCF for Disjunctive Action Landmark)

Let Π be a planning task and $\mathcal L$ be a disjunctive action landmark. The minimal saturated cost function for $\mathcal L$ is

$$\operatorname{mscf}(o) = egin{cases} \min_{o \in \mathcal{L}} \operatorname{cost}(o) & \text{if } o \in \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

Does this look familiar?

LM-Cut computes SCP over disjunctive action landmarks

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

November 23, 2020

Saturated Cost Partitioning

42 / 44

E5. Cost Partitioning

Summar

Summary

- Cost partitioning allows to admissibly add up estimates of several heuristics.
- ► This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
- ► Saturated cost partitioning offers good tradeoff between computation time and heuristic guidance
- ► LM-Cut computes SCP over disjunctive action landmarks

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 23, 2020 44 / 44

M. Helmert, G. Röger (Universität Basel) Planning and

Planning and Optimization

November 23, 2020