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Landmarks

Basic Idea: Something that must happen in every solution

For example
m some operator must be applied (action landmark)
m some atomic proposition must hold (fact landmark)

m some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.
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Landmarks

Basic Idea: Something that must happen in every solution

For example
m some operator must be applied (action landmark)
m some atomic proposition must hold (fact landmark)

m some formula must be true (formula landmark)

— Derive heuristic estimate from this kind of information.

We only consider fact and disjunctive action landmarks.
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Definition

Definition (Disjunctive Action Landmark)

Let s be a state of planning task 1= (V,/,0,7).

A disjunctive action landmark for s is a set of operators L C O
such that every label path from s to a goal state contains an
operator from L.

The cost of landmark L is cost(L) = minye; cost(o).

Definition (Fact Landmark)
Let s be a state of planning task M= (V. /I, O,~).

An atomic proposition v = d for v € V and d € dom(v) is a fact
landmark for s if every state path from s to a goal state contains a
state s’ with s'(v) = d.

If we talk about landmarks for the initial state, we omit “for I".
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Landmarks: Example

Consider a FDR planning task (V, [, O,~) with
m V = {robot-at, dishes-at} with
m dom(robot-at) = {Al,...,C3,B4,A5,...,B6}
m dom(dishes-at) = {Table, Robot, Dishwasher}
m | = {robot-at — C1, dishes-at — Table}
B operators

m move-x-y to move from cell x to adjacent cell y
m pickup dishes, and
m load dishes into the dishwasher.

m v = (robot-at = B6) A (dishes-at = Dishwasher)
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Fact Landmarks: Example

C %
Images from wikimedia

Each fact in gray is a fact landmark:
m robot-at = x for x € {Al,A6,B3,B4,B5,B6,C1}
m dishes-at = x for x € {Dishwasher, Robot, Table}
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Summar

c0 o r—
A b p
2 Beim
+ 7+

i

Actions of same color form disjunctive action landmark:

= {pickup} = {move-A6-B6, move-B5-B6}
m {load} = {move-A3-B3, move-B2-B3, move-C3-B3}

m {move-B3-B4} m {move-B1-Al, move-A2-Al1}
= {move-B4-B5} ...
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Remarks

m Not every landmark is informative. Some examples:
m The set of all operators is a disjunctive action landmark
unless the initial state is already a goal state.
m Every variable that is initially true is a fact landmark.
m Deciding whether a given variable is a fact landmark
is as hard as the plan existence problem.

m Deciding whether a given operator set is a disjunctive
action landmark is as hard as the plan existence problem.

m Every fact landmark v that is initially false induces a
disjunctive action landmark consisting of all operators that
possibly make v true.
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Computing Landmarks

How can we come up with landmarks?

Most landmarks are derived from the relaxed task graph:
m RHW landmarks: Richter, Helmert & Westphal. Landmarks
Revisited. (AAAI 2008)
m LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and
Abstractions: What's the Difference Anyway? (ICAPS 2009)
m A" landmarks: Keyder, Richter & Helmert: Sound and
Complete Landmarks for And/Or Graphs (ECAI 2010)

We discuss h™ landmarks restricted to m =1
and to STRIPS planning tasks.
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Incidental Landmarks: Example

Example (Incidental Landmarks)
Consider a STRIPS planning task (V. I, {01, 02},7) with

V ={a b,c,d e},
I={a—T,b—>T,c—F,d—=F,e—T,f— F},

o = ({a},{c,d, e},{a, b}),

op = ({d,e}, {f},{a,d}), and

v={e,f}.

Single solution: (o1, 02)
m All variables are fact landmarks.
m Variable b is initially true but irrelevant for the plan.

m Variable ¢ gets true as “side effect” of o; but it is not
necessary for the goal or to make an operator applicable.
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Causal Landmarks

Definition (Causal Fact Landmark)
Let M= (V,I,0,v) be a STRIPS planning task.

An atomic proposition v = T for v € V is a causal fact landmark
mifvey

m or if for all goal paths 7 = (o1, ..., 0p) there is an o; with
v € pre(o;).
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Causal Landmarks: Example

Example (Causal Landmarks)
Consider a STRIPS planning task (V,/,{01,02},7) with

V ={a b,c,d e},
I={a—T,b—~T,c—F,d—F,e—T,f— F}
o = ({a}, {c,d, e}, {a, b}),

o = ({d,e},{f},{a,d}), and

~v={e f}.

Single solution: (o1, 02)
m All variables are fact landmarks for the initial state.

m Only a,d, e and f are causal landmarks.
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What We Are Doing Next

Causal landmarks are the desirable landmarks.

m We can use a simplified version of RTGs to compute
causal landmarks for STRIPS planning tasks.

We will define landmarks of AND/OR graphs, ...

and show how they can be computed.

Afterwards we establish that these are landmarks
of the planning task.
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Slmpllfled Relaxed Task Graph

Definition
For a STRIPS planning task 1= (V. I, O,~), the simplified
relaxed task graph sRTG(M") is the AND/OR graph
(Nang U Nor, A, type) with
m Nypg = {no ‘ oc O} U {V/, Vg}
with type(n) = A for all n € Nypg,
m Noe={n,|veV}
with type(n) = V for all n € No, and
B A={(ns;,n,) | 0€ 0,ac add(o)} U
{(no,np) | 0 € O, p € pre(o)} U
{{ny,n;) | veltu
{(

ng,ny) | v e}
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Slmpllfled RTG: Example

The simplified RTG for our example task is:
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Characterizing Equation System

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n)={n}uU () LM(n") type(n)=V
(n,n")EA

LM(n) ={n}u [ LM(n") type(n)=n
(n,n")EA

The equation system has a unique maximal solution (maximal with
regard to set inclusion), and for this solution it holds that

n" € LM(n) iff n" is a landmark for reaching n in G.
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Computation of Maximal Solution

Let G = (N, A, type) be an AND/OR graph. Consider the
following system of equations:

LM(n)={n}uU () LM(n") type(n)=V
(n,n")EA

LM(n)={n}u [ LM(n") type(n)=n
(n,n")EA

The equation system has a unique maximal solution (maximal with
regard to set inclusion).

<

Computation: Initialize landmark sets as LM(n) = Nypng U Ny, and
apply equations as update rules until fixpoint.
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Computation: Example
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Computation: Example

a-f,1,G,01,00 a-f,1,G,01,00

a-f,1,G,o1,

Initialize with all nodes



Landmarks from RTGs Minimum Hitting Set Heuristic Summar

00000000000 e000 YOO

Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

a-f,1,G,01,0 a-f,1\G,01,02
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

LM(a) = {a} U LM(1)
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Computation: Example

a-f,1,G,01,02 a-f,1,G,01,00

LM(b) = {b} U LM(I)
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Computation: Example

a-f,1,G,01,00 a-f,1,G,01,00

LM(e) = {e} U (LM(I) N LM(01))
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Computation: Example

a,l,o1 a-f,1,G,01,02

LM(o1) = {o1} U LM(a)
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a,l,o1 a-f,1,G,01,02

LM(c) = {c} U LM(o1)
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a,l,o1 a-f,1,G,01,02

LM(d) = {d} U LM(0,)
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a,l,o1 a,d,el, 01,00

LM(02) = {02} U LM(d) U LM(e)
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a,l,o1 a,d,el, 01,00

a,d,e¥,l,01,02

LM(f) = {f} U LM(02)
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alo a,d.el 01,00

a,d,e¥,l,01,02

LM(G) = {G} U LM(e) U LM(f)
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Relation to Planning Task Landmarks

Theorem

Let M= (V,I,0,~) be a STRIPS planning task and
let L be the set of landmarks for reaching n¢ in sSRTG(M).

The set {v =T |v e V and n, € L} is exactly the set of
causal fact landmarks in N~

For operators o € O, if n, € L then {o} is a
disjunctive action landmark in 1T,
There are no other disjunctive action landmarks of size 1.

(Proofs omitted.)
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Computed RTG Landmarks: Example

Example (Computed RTG Landmarks)
Consider a STRIPS planning task (V,/,{01,02},7) with

V ={ab,c,d e},
I={a—T,b—~T,c—F,d—F,e—T,f— F}
= ({a}, {c, d, e},{a, b}),
= ({d,e},{f},{a,d}), and
v ={e f}.

m LM(ng) = {a,d, e, f,l,G, 01,0}
m a,d, e, and f are causal fact landmarks of M.

m {01} and {0z} are disjunctive action landmarks of ™.
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Landmarks of ™ Are Landmarks of

Theorem
Let T be a STRIPS planning task.

All fact landmarks of M are fact landmarks of 1 and all disjunctive
action landmarks of M are disjunctive action landmarks of T.

Proof

Let L be a disjunctive action landmark of ™ and 7 be a plan for
M. Then 7 is also a plan for M and, thus, = contains an operator
from L.

| A\

Let f be a fact landmark of M. If f is already true in the initial

state, then it is also a landmark of I. Otherwise, every plan for "
contains an operator that adds f and the set of all these operators
is a disjunctive action landmark of ™. Therefore, also each plan of
I contains such an operator, making f a fact landmark of 1. [

y
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Exploiting Disjunctive Action Landmarks

m The cost cost(L) of a disjunctive action landmark L is an
admissible heuristic, but it is usually not very informative.

m Landmark heuristics typically aim to combine multiple
disjunctive action landmarks.

How can we exploit a given set £ of disjunctive action landmarks?

m Sum of costs } . cost(L)?
~+ not admissible!

m Maximize costs max; ¢, cost(L)?
~> usually very weak heuristic

m better: Hitting sets
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Hitting Sets

Definition (Hitting Set)

Let X be a set, F ={Fy,...,Fa} C 2X be a family of subsets of
Xandc: X — ]Rar be a cost function for X.

A hitting set is a subset H C X that “hits” all subsets in F, i.e.,
HNF #0 forall F e F. The cost of His )~ 4 c(x).

A minimum hitting set (MHS) is a hitting set with minimal cost.

Summar

v

MHS is a “classical” NP-complete problem (Karp, 1972)
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Example: Hitting Sets

X = {017 02, 03, 04}

F ={{os},{o1,0}, {01, 03}, {02, 03}}
c(o1) =3, c(o2) =4, c(o3) =5, c(os) =0

What is a minimum hitting set?
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Example: Hitting Sets

X = {017 02, 03, 04}

F ={{os},{o1,0}, {01, 03}, {02, 03}}
c(o1) =3, c(o2) =4, c(o3) =5, c(os) =0

What is a minimum hitting set?

Solution: {01, 02,04} with cost 3+4+4+0=7
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Hitting Sets for Disjunctive Action Landmarks

Idea: disjunctive action landmarks are interpreted as
instance of minimum hitting set

Definition (Hitting Set Heuristic)

Let £ be a set of disjunctive action landmarks. The hitting set
heuristic AMHS(L) is defined as the cost of a minimum hitting set
for £ with c(o) = cost(0).

Proposition (Hitting Set Heuristic is Admissible)

Let L be a set of disjunctive action landmarks for state s.
Then hMH5(L) is an admissible estimate for s.
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Hitting Set Heuristic: Discussion

m The hitting set heuristic is the best possible heuristic
that only uses the given information. ..

m ...but is NP-hard to compute.

m ~~ Use approximations that can be efficiently computed.
= LP-relaxation, cost partitioning (both discussed later)
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Summary

m Fact landmark: atomic proposition that is true in each state
path to a goal

m Disjunctive action landmark: set L of operators such that
every plan uses some operator from L

m Relaxed task graphs allows efficient computation of landmarks

m Hitting sets yield the most accurate heuristic for a given set of
disjunctive action landmarks

m Computation of minimal hitting set is NP-hard
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