Planning and Optimization

E1. Constraints: Introduction

Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course

Content of this Course: Constraints

Constraint-based Heuristics

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem.
Major ideas for heuristics in the planning literature:

- delete relaxation
- abstraction

■ landmarks

- critical paths
- network flows
- potential heuristic

Landmarks, network flows and potential heuristics are based on constraints that can be specified for a planning task.

Constraints: Example

Constraints: Example

Example

Consider a FDR planning task $\langle V, I, O, \gamma\rangle$ with

- $V=\{$ robot-at, dishes-at $\}$ with
- $\operatorname{dom}($ robot-at $)=\{\mathrm{A} 1, \ldots, \mathrm{C} 3, \mathrm{~B} 4, \mathrm{~A} 5, \ldots, \mathrm{~B} 6\}$
- $\operatorname{dom}($ dishes-at $)=\{$ Table, Robot, Dishwasher $\}$

■ I $=\{$ robot-at \mapsto C1, dishes-at \mapsto Table $\}$

- operators
- move- $x-y$ to move from cell x to adjacent cell y
- pickup dishes, and
- load dishes into the dishwasher.

■ $\gamma=($ robot-at $=B 6) \wedge($ dishes-at $=$ Dishwasher $)$

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that
■ a variable takes some value in at least one visited state. (a fact landmark constraint)

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

■ robot-at $=$ C1, dishes-at $=$ Table (initial state)

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

- robot-at $=$ C1, dishes-at $=$ Table (initial state)
- robot-at $=$ B6, dishes-at $=$ Dishwasher (goal state)

Fact Landmarks: Example

Which values do robot-at and dishes-at take in every solution?

- robot-at $=$ C1, dishes-at $=$ Table (initial state)
- robot-at $=$ B6, dishes-at $=$ Dishwasher (goal state)

■ robot-at $=A 1$, robot-at $=B 3$, robot-at $=B 4$, robot-at $=$ B5, robot-at $=A 6$, dishes-at $=$ Robot

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state. (a fact landmark constraint)
■ an action must be applied. (an action landmark constraint)

Action Landmarks: Example

Which actions must be applied in every solution?

Action Landmarks: Example

Which actions must be applied in every solution?

- pickup
- load

Action Landmarks: Example

Which actions must be applied in every solution?

- pickup
- load
- move-B3-B4
- move-B4-B5

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state. (a fact landmark constraint)
■ an action must be applied. (an action landmark constraint)

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that
■ a variable takes some value in at least one visited state. (a fact landmark constraint)

- at least one action from a set of actions must be applied. (a disjunctive action landmark constraint)

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

- \{pickup\}
- \{load \}
- \{move-B3-B4\}
- \{move-B4-B5\}

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

- \{pickup\}
- \{ move-A6-B6, move-B5-B6\}
- \{load \}
- \{move-B3-B4\}
- \{move-B4-B5\}

Disjunctive Action Landmarks: Example

Which set of actions is such that at least one must be applied?

- \{pickup\}
- \{ move-A6-B6, move-B5-B6\}
- \{load $\}$
- \{ move-A3-B3, move-B2-B3, move-C3-B3\}
- \{move-B3-B4
- \{move-B1-A1, move-A2-A1\}
- \{move-B4-B5\}

■ . . .

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state. (a fact landmark constraint)
- at least one action from a set of actions must be applied. (a disjunctive action landmark constraint)
- fact consumption and production is "balanced". (a network flow constraint)

Network Flow: Example

Consider the fact robot-at $=B 1$.
How often are actions used that enter this cell?

Network Flow: Example

Consider the fact robot-at $=B 1$.
How often are actions used that enter this cell?

Answer: as often as actions that leave this cell
If Count ${ }_{o}$ denotes how often operator o is applied, we have:
Count $_{\text {move-A1-B1 }}+$ Count $_{\text {move-B2-B1 }}+$ Count $_{\text {move-C1-B1 }}=$
Count $_{\text {move-B1-A1 }}+$ Count $_{\text {move-B1-B2 }}+$ Count $_{\text {move-B1-C1 }}$

Multiple Heuristics

Combining Admissible Heuristics Admissibly

Major ideas to combine heuristics admissibly:

- maximize
- canoncial heuristic (for abstractions)
- minimum hitting set (for landmarks)
- cost partitioning
- operator counting

Often computed as solution to a (integer) linear program.

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task $\left\langle V, I,\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}, \gamma\right\rangle$ with
$V=\left\{v_{1}, v_{2}, v_{3}\right\}$ with $\operatorname{dom}\left(v_{1}\right)=\{A, B\}$ and
$\operatorname{dom}\left(v_{2}\right)=\operatorname{dom}\left(v_{3}\right)=\{A, B, C\}, I=\left\{v_{1} \mapsto A, v_{2} \mapsto A, v_{3} \mapsto A\right\}$,

$$
\begin{aligned}
& o_{1}=\left\langle v_{1}=\mathrm{A}, v_{1}:=\mathrm{B}, 1\right\rangle \\
& o_{2}=\left\langle v_{2}=\mathrm{A} \wedge v_{3}=\mathrm{A}, v_{2}:=\mathrm{B} \wedge v_{3}:=\mathrm{B}, 1\right\rangle \\
& o_{3}=\left\langle v_{2}=\mathrm{B}, v_{2}:=\mathrm{C}, 1\right\rangle \\
& o_{4}=\left\langle v_{3}=\mathrm{B}, v_{3}:=\mathrm{C}, 1\right\rangle
\end{aligned}
$$

and $\gamma=\left(v_{1}=\mathrm{B}\right) \wedge\left(v_{2}=\mathrm{C}\right) \wedge\left(v_{3}=\mathrm{C}\right)$.
Let \mathcal{C} be the pattern collection that contains all atomic projections. What is the canonical heuristic function $h^{\mathcal{C}}$?

Combining Heuristics Admissibly: Example

Example

Consider an FDR planning task $\left\langle V, I,\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}, \gamma\right\rangle$ with
$V=\left\{v_{1}, v_{2}, v_{3}\right\}$ with $\operatorname{dom}\left(v_{1}\right)=\{A, B\}$ and
$\operatorname{dom}\left(v_{2}\right)=\operatorname{dom}\left(v_{3}\right)=\{A, B, C\}, I=\left\{v_{1} \mapsto A, v_{2} \mapsto A, v_{3} \mapsto A\right\}$,

$$
\begin{aligned}
& o_{1}=\left\langle v_{1}=\mathrm{A}, v_{1}:=\mathrm{B}, 1\right\rangle \\
& o_{2}=\left\langle v_{2}=\mathrm{A} \wedge v_{3}=\mathrm{A}, v_{2}:=\mathrm{B} \wedge v_{3}:=\mathrm{B}, 1\right\rangle \\
& o_{3}=\left\langle v_{2}=\mathrm{B}, v_{2}:=\mathrm{C}, 1\right\rangle \\
& o_{4}=\left\langle v_{3}=\mathrm{B}, v_{3}:=\mathrm{C}, 1\right\rangle
\end{aligned}
$$

and $\gamma=\left(v_{1}=\mathrm{B}\right) \wedge\left(v_{2}=\mathrm{C}\right) \wedge\left(v_{3}=\mathrm{C}\right)$.
Let \mathcal{C} be the pattern collection that contains all atomic projections. What is the canonical heuristic function $h^{\mathcal{C}}$?

Answer: Let $h_{i}:=h^{v_{i}}$. Then $h^{\mathcal{C}}=\max \left\{h_{1}+h_{2}, h_{1}+h_{3}\right\}$.

Reminder: Orthogonality and Additivity

Why can we add h_{1} and $h_{2}\left(h_{1}\right.$ and $\left.h_{3}\right)$ admissibly?

Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_{1}}, \ldots, h^{\alpha_{n}}$ be abstraction heuristics of the same transition system such that α_{i} and α_{j} are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_{i}}$ is a safe, goal-aware, admissible and consistent heuristic for Π.

Consistency proof exploits that every concrete transition induces state-changing transition in at most one abstraction.

Combining Heuristics Admissibly: Example

Let $h=h_{1}+h_{2}+h_{3}$. Where is consistency violated?

h_{1}

Combining Heuristics Admissibly: Example

Let $h=h_{1}+h_{2}+h_{3}$. Where is consistency violated?

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h=h_{1}+h_{2}+h_{3}$. Where is consistency violated?

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h=h_{1}+h_{2}+h_{3}$. Where is consistency violated?

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h=h_{1}+h_{2}+h_{3}$. Where is consistency violated?

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h=h_{1}+h_{2}+h_{3}$. Where is consistency violated?

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Inconsistency of h_{2} and h_{3}

The reason that h_{2} and h_{3} are not additive is because the cost of o_{2} is considered in both.

Is there anything we can do about this?

Inconsistency of h_{2} and h_{3}

The reason that h_{2} and h_{3} are not additive is because the cost of o_{2} is considered in both.

Is there anything we can do about this?
Solution: We can ignore the cost of o_{2} in one heuristic by setting its cost to 0 (e.g., $\operatorname{cost}_{3}\left(o_{2}\right)=0$).

Combining Heuristics Admissibly: Example

Let $h^{\prime}=h_{1}+h_{2}+h_{3}^{\prime}$, where $h_{3}^{\prime}=h^{v_{3}}$ assuming $\operatorname{cost}_{3}\left(o_{2}\right)=0$.

Combining Heuristics Admissibly: Example

Let $h^{\prime}=h_{1}+h_{2}+h_{3}^{\prime}$, where $h_{3}^{\prime}=h^{v_{3}}$ assuming $\operatorname{cost}_{3}\left(o_{2}\right)=0$.

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h^{\prime}=h_{1}+h_{2}+h_{3}^{\prime}$, where $h_{3}^{\prime}=h^{v_{3}}$ assuming $\operatorname{cost}_{3}\left(o_{2}\right)=0$.

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h^{\prime}=h_{1}+h_{2}+h_{3}^{\prime}$, where $h_{3}^{\prime}=h^{V_{3}}$ assuming $\operatorname{cost}_{3}\left(o_{2}\right)=0$.

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h^{\prime}=h_{1}+h_{2}+h_{3}^{\prime}$, where $h_{3}^{\prime}=h^{v_{3}}$ assuming $\operatorname{cost}_{3}\left(o_{2}\right)=0$.

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Combining Heuristics Admissibly: Example

Let $h^{\prime}=h_{1}+h_{2}+h_{3}^{\prime}$, where $h_{3}^{\prime}=h^{v_{3}}$ assuming $\operatorname{cost}_{3}\left(o_{2}\right)=0$.

Consider solution $\left\langle o_{1}, o_{2}, o_{3}, o_{4}\right\rangle$

Cost partitioning

Using the cost of every operator only in one heuristic is called a zero-one cost partitioning.

Cost partitioning

Using the cost of every operator only in one heuristic is called a zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are distributed in a way that the sum of the individual costs is no larger than the cost of the operator.

This can also be expressed as a constraint, the cost partitioning constraint:

$$
\sum_{i=1}^{n} \operatorname{cost}_{i}(o) \leq \operatorname{cost}(o) \text { for all } o \in O
$$

(more details later)

Summary

Summary

■ Landmarks and network flows are constraints that describe something that holds in every solution of the task.
■ Heuristics can be summed up admissibly if the cost partitioning constraint is satisfied.

