# Planning and Optimization D2. Abstractions: Formal Definition and Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

#### Content of this Course



#### Content of this Course: Heuristics



Transition Systems •000000

### Transition Systems

#### Reminder from Chapter A3:

#### Definition (Transition System)

A transition system is a 6-tuple  $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$  where

- S is a finite set of states.
- L is a finite set of (transition) labels,
- $\mathbf{c}: L \to \mathbb{R}_0^+$  is a label cost function,
- $T \subset S \times L \times S$  is the transition relation,
- $s_0 \in S$  is the initial state, and
- $S_{\star} \subseteq S$  is the set of goal states.

We say that  $\mathcal{T}$  has the transition  $\langle s, \ell, s' \rangle$  if  $\langle s, \ell, s' \rangle \in \mathcal{T}$ .

We also write this as  $s \xrightarrow{\ell} s'$ , or  $s \to s'$  when not interested in  $\ell$ .

Note: Transition systems are also called state spaces.

### Transition Systems: Example



Note: To reduce clutter, our figures often omit arc labels and costs and collapse transitions between identical states. However, these are important for the formal definition of the transition system.

### Mapping Planning Tasks to Transition Systems

#### Reminder from Chapter A3:

#### Definition (Transition System Induced by a Planning Task)

The planning task  $\Pi = \langle V, I, O, \gamma \rangle$  induces the transition system  $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$ , where

- $lue{S}$  is the set of all states over state variables V,
- L is the set of operators O,
- c(o) = cost(o) for all operators  $o \in O$ ,
- $T = \{\langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s[o]\},$
- $\bullet$   $s_0 = I$ , and
- $S_{\star} = \{ s \in S \mid s \models \gamma \}.$

### Tasks in Finite-Domain Representation

#### Notes:

- We will focus on planning tasks in finite-domain representation (FDR) while studying abstractions.
- All concepts apply equally to propositional planning tasks.
- However, FDR tasks are almost always used by algorithms in this context because they tend to have fewer useless (physically impossible) states.
- Useless states can hurt the efficiency of abstraction-based algorithms.

### Example Task: One Package, Two Trucks

#### Example (One Package, Two Trucks)

Consider the following FDR planning task  $\langle V, I, O, \gamma \rangle$ :

- $V = \{p, t_A, t_B\}$  with
  - $\mod(p) = \{\mathsf{L},\mathsf{R},\mathsf{A},\mathsf{B}\}$
  - $\bullet \ \mathsf{dom}(t_{\mathsf{A}}) = \mathsf{dom}(t_{\mathsf{B}}) = \{\mathsf{L},\mathsf{R}\}$
- $\blacksquare I = \{p \mapsto \mathsf{L}, t_\mathsf{A} \mapsto \mathsf{R}, t_\mathsf{B} \mapsto \mathsf{R}\}$
- $O = \{ \mathsf{pickup}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\} \}$   $\cup \{ \mathsf{drop}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\} \}$   $\cup \{ \mathsf{move}_{i,i,i'} \mid i \in \{\mathsf{A},\mathsf{B}\}, j,j' \in \{\mathsf{L},\mathsf{R}\}, j \neq j' \}, \text{ where }$ 
  - $\blacksquare$  pickup<sub>i,j</sub> =  $\langle t_i = j \land p = j, p := i, 1 \rangle$
  - $drop_{i,j} = \langle t_i = j \land p = i, p := j, 1 \rangle$
  - lacksquare move $_{i,j,j'}=\langle t_i=j,t_i:=j',1
    angle$
- $\gamma = (p = R)$

Transition Systems

### Transition System of Example Task



- State  $\{p \mapsto i, t_A \mapsto j, t_B \mapsto k\}$  is depicted as *ijk*.
- Transition labels are again not shown. For example, the transition from LLL to ALL has the label pickup<sub>A.L</sub>.

### **Abstractions**

#### **Abstractions**

#### Definition (Abstraction)

Let  $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$  be a transition system.

An abstraction (also: abstraction function, abstraction mapping) of  $\mathcal{T}$  is a function  $\alpha:S\to S^\alpha$  defined on the states of  $\mathcal{T}$ , where  $S^\alpha$  is an arbitrary set.

Without loss of generality, we require that  $\alpha$  is surjective.

Intuition:  $\alpha$  maps the states of  $\mathcal{T}$  to another (usually smaller) abstract state space.

### Abstract Transition System

#### Definition (Abstract Transition System)

Let  $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$  be a transition system, and let  $\alpha: S \to S^{\alpha}$  be an abstraction of  $\mathcal{T}$ .

The abstract transition system induced by  $\alpha$ , in symbols  $\mathcal{T}^{\alpha}$ , is the transition system  $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_{0}^{\alpha}, S_{\star}^{\alpha} \rangle$  defined by:

- $T^{\alpha} = \{\langle \alpha(s), \ell, \alpha(t) \rangle \mid \langle s, \ell, t \rangle \in T\}$
- $s_0^{\alpha} = \alpha(s_0)$
- $S^{\alpha}_{+} = \{\alpha(s) \mid s \in S_{+}\}$

### Concrete and Abstract State Space

Let  $\mathcal{T}$  be a transition system and  $\alpha$  be an abstraction of  $\mathcal{T}$ .

- T is called the concrete transition system.
- lacktriangleright  $\mathcal{T}^{\alpha}$  is called the abstract transition system.
- Similarly: concrete/abstract state space, concrete/abstract transition, etc.

### Abstraction: Example

#### concrete transition system



### Abstraction: Example

#### abstract transition system



Note: Most arcs represent many parallel transitions.

## Homomorphisms and Isomorphisms

### Homomorphisms and Isomorphisms

- The abstraction mapping  $\alpha$  that transforms  $\mathcal{T}$  to  $\mathcal{T}^{\alpha}$  is also called a strict homomorphism from  $\mathcal{T}$  to  $\mathcal{T}^{\alpha}$ .
- Roughly speaking, in mathematics a homomorphism is a property-preserving mapping between structures.
- A strict homomorphism is one where no additional features are introduced. A non-strict homomorphism in planning would mean that the abstract transition system may include additional transitions and goal states not induced by  $\alpha$ .
- We only consider strict homomorphisms in this course.
- If  $\alpha$  is bijective, it is called an isomorphism between  $\mathcal{T}$  and  $\mathcal{T}^{\alpha}$ , and the two transition systems are called isomorphic.

### Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough to warrant a formal definition:

#### Definition (Isomorphic Transition Systems)

Let  $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$  and  $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$  be transition systems.

We say that  $\mathcal{T}$  is isomorphic to  $\mathcal{T}'$ , in symbols  $\mathcal{T} \sim \mathcal{T}'$ , if there exist bijective functions  $\varphi : S \to S'$  and  $\lambda : L \to L'$  such that:

- $s \xrightarrow{\ell} t \in T \text{ iff } \varphi(s) \xrightarrow{\lambda(\ell)} \varphi(t) \in T',$
- $c'(\lambda(\ell)) = c(\ell)$  for all  $\ell \in L$ ,
- $\varphi(s_0) = s'_0$ , and
- $s \in S_{\star}$  iff  $\varphi(s) \in S'_{\star}$ .

### Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

#### Definition (Graph-Equivalent Transition Systems)

Let  $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$  and  $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$  be transition systems.

We say that  $\mathcal{T}$  is graph-equivalent to  $\mathcal{T}'$ , in symbols  $\mathcal{T} \stackrel{\mathsf{G}}{\sim} \mathcal{T}'$ , if there exists a bijective function  $\varphi : S \to S'$  such that:

- There is a transition  $s \xrightarrow{\ell} t \in T$  with  $c(\ell) = k$  iff there is a transition  $\varphi(s) \xrightarrow{\ell'} \varphi(t) \in T'$  with  $c'(\ell') = k$ ,
- ullet  $\varphi(s_0)=s_0'$ , and
- $s \in S_{\star}$  iff  $\varphi(s) \in S'_{\star}$ .

Note: The labels of  $\mathcal{T}$  and  $\mathcal{T}'$  do not matter except that transitions of the same cost must be preserved.

### Isomorphism vs. Graph Equivalence

- $\bullet$  ( $\sim$ ) and ( $\stackrel{\mathsf{G}}{\sim}$ ) are equivalence relations.
- Two isomorphic transition systems are interchangeable for all practical intents and purposes.
- Two graph-equivalent transition systems are interchangeable for most intents and purposes.
- In particular, their goal distances are identical.
- Isomorphism implies graph equivalence, but not vice versa.

### **Abstraction Heuristics**

#### Abstraction Heuristics

#### Definition (Abstraction Heuristic)

Let  $\alpha: S \to S^{\alpha}$  be an abstraction of a transition system  $\mathcal{T}$ .

The abstraction heuristic induced by  $\alpha$ , written  $h^{\alpha}$ , is the heuristic function  $h^{\alpha}:S\to\mathbb{R}_0^+\cup\{\infty\}$  defined as

$$h^{\alpha}(s) = h_{\mathcal{T}^{\alpha}}^*(\alpha(s))$$
 for all  $s \in \mathcal{S}$ ,

where  $h_{\mathcal{T}^{\alpha}}^*$  denotes the goal distance function in  $\mathcal{T}^{\alpha}$ .

#### Notes:

- $h^{\alpha}(s) = \infty$  if no goal state of  $\mathcal{T}^{\alpha}$  is reachable from  $\alpha(s)$
- We also apply abstraction terminology to planning tasks  $\Pi$ , which stand for their induced transition systems. For example, an abstraction of  $\Pi$  is an abstraction of  $\mathcal{T}(\Pi)$ .

### Abstraction Heuristics: Example



$$h^{\alpha}(\{p \mapsto \mathsf{L}, t_{\mathsf{A}} \mapsto \mathsf{R}, t_{\mathsf{B}} \mapsto \mathsf{R}\}) = 3$$

### Consistency of Abstraction Heuristics (1)

#### Theorem (Consistency and Admissibility of $h^{\alpha}$ )

Let  $\alpha$  be an abstraction of a transition system  $\mathcal{T}$ . Then  $h^{\alpha}$  is safe, goal-aware, admissible and consistent.

#### Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let 
$$\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$$
.  
Let  $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_{\star}^{\alpha} \rangle$ .

### Consistency of Abstraction Heuristics (1)

#### Theorem (Consistency and Admissibility of $\mathit{h}^{lpha}$ )

Let  $\alpha$  be an abstraction of a transition system  $\mathcal{T}$ . Then  $h^{\alpha}$  is safe, goal-aware, admissible and consistent.

#### Proof.

We prove goal-awareness and consistency; the other properties follow from these two.

Let 
$$\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$$
.  
Let  $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_{\star}^{\alpha} \rangle$ .

Goal-awareness: We need to show that  $h^{\alpha}(s)=0$  for all  $s\in S_{\star}$ , so let  $s\in S_{\star}$ . Then  $\alpha(s)\in S_{\star}^{\alpha}$  by the definition of abstract transition systems, and hence  $h^{\alpha}(s)=h_{\mathcal{T}^{\alpha}}^{*}(\alpha(s))=0$ .

### Consistency of Abstraction Heuristics (2)

#### Proof (continued).

Consistency: Consider any state transition  $s \xrightarrow{\ell} t$  of  $\mathcal{T}$ .

We need to show  $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$ .

### Consistency of Abstraction Heuristics (2)

#### Proof (continued).

Consistency: Consider any state transition  $s \stackrel{\ell}{\to} t$  of  $\mathcal{T}$ .

We need to show  $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$ .

By the definition of  $\mathcal{T}^{\alpha}$ , we get  $\alpha(s) \xrightarrow{\ell} \alpha(t) \in \mathcal{T}^{\alpha}$ .

Hence,  $\alpha(t)$  is a successor of  $\alpha(s)$  in  $\mathcal{T}^{\alpha}$  via the label  $\ell$ .

### Consistency of Abstraction Heuristics (2)

#### Proof (continued).

Consistency: Consider any state transition  $s \stackrel{\ell}{\to} t$  of  $\mathcal{T}$ .

We need to show  $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$ .

By the definition of  $\mathcal{T}^{\alpha}$ , we get  $\alpha(s) \xrightarrow{\ell} \alpha(t) \in \mathcal{T}^{\alpha}$ .

Hence,  $\alpha(t)$  is a successor of  $\alpha(s)$  in  $\mathcal{T}^{\alpha}$  via the label  $\ell$ .

We get:

$$egin{aligned} h^lpha(s) &= h^st_{\mathcal{T}^lpha}(lpha(s)) \ &\leq c(\ell) + h^st_{\mathcal{T}^lpha}(lpha(t)) \ &= c(\ell) + h^lpha(t), \end{aligned}$$

where the inequality holds because perfect goal distances  $h_{\mathcal{T}^{\alpha}}^*$  are consistent in  $\mathcal{T}^{\alpha}$ .

(The shortest path from  $\alpha(s)$  to the goal in  $\mathcal{T}^{\alpha}$  cannot be longer than the shortest path from  $\alpha(s)$  to the goal via  $\alpha(t)$ .)

#### Abstractions of Abstractions

Since abstractions map transition systems to transition systems, they are composable:

- Using a first abstraction  $\alpha: S \to S'$ , map  $\mathcal{T}$  to  $\mathcal{T}^{\alpha}$ .
- Using a second abstraction  $\beta: S' \to S''$ , map  $\mathcal{T}^{\alpha}$  to  $(\mathcal{T}^{\alpha})^{\beta}$ .

The result is the same as directly using the abstraction  $(\beta \circ \alpha)$ :

- Let  $\gamma: S \to S''$  be defined as  $\gamma(s) = (\beta \circ \alpha)(s) = \beta(\alpha(s))$ .
- Then  $\mathcal{T}^{\gamma} = (\mathcal{T}^{\alpha})^{\beta}$ .

### Abstractions of Abstractions: Example (1)



transition system  $\mathcal{T}$ 

### Abstractions of Abstractions: Example (2)



Transition system  $\mathcal{T}'$  as an abstraction of  $\mathcal{T}$ 

### Abstractions of Abstractions: Example (2)



Transition system  $\mathcal{T}'$  as an abstraction of  $\mathcal{T}$ 

### Abstractions of Abstractions: Example (3)



Transition system  $\mathcal{T}''$  as an abstraction of  $\mathcal{T}'$ 

### Abstractions of Abstractions: Example (3)



Transition system  $\mathcal{T}''$  as an abstraction of  $\mathcal{T}$ 

### Coarsenings and Refinements

#### Definition (Coarsening and Refinement)

Let  $\alpha$  and  $\gamma$  be abstractions of the same transition system such that  $\gamma = \beta \circ \alpha$  for some function  $\beta$ .

Then  $\gamma$  is called a coarsening of  $\alpha$  and  $\alpha$  is called a refinement of  $\gamma$ .

### Heuristic Quality of Refinements

#### Theorem (Heuristic Quality of Refinements)

Let  $\alpha$  and  $\gamma$  be abstractions of the same transition system such that  $\alpha$  is a refinement of  $\gamma$ .

Then  $h^{\alpha}$  dominates  $h^{\gamma}$ .

In other words,  $h^{\gamma}(s) \leq h^{\alpha}(s) \leq h^{*}(s)$  for all states s.

### Heuristic Quality of Refinements: Proof

#### Proof.

Since  $\alpha$  is a refinement of  $\gamma$ , there exists a function  $\beta$  with  $\gamma=\beta\circ\alpha$ .

For all states s of  $\Pi$ , we get:

$$h^{\gamma}(s) = h_{\mathcal{T}^{\gamma}}^{*}(\gamma(s))$$

$$= h_{\mathcal{T}^{\gamma}}^{*}(\beta(\alpha(s)))$$

$$= h_{\mathcal{T}^{\alpha}}^{\beta}(\alpha(s))$$

$$\leq h_{\mathcal{T}^{\alpha}}^{*}(\alpha(s))$$

$$= h^{\alpha}(s),$$

where the inequality holds because  $h_{\mathcal{T}^{\alpha}}^{\beta}$  is an admissible heuristic in the transition system  $\mathcal{T}^{\alpha}$ .

# Summary

### Summary

- An abstraction is a function  $\alpha$  that maps the states S of a transition system to another (usually smaller) set  $S^{\alpha}$ .
- This induces an abstract transition system  $\mathcal{T}^{\alpha}$ , which behaves like the original transition system  $\mathcal{T}$  except that states mapped to the same abstract state cannot be distinguished.
- Abstractions  $\alpha$  induce abstraction heuristics  $h^{\alpha}$ :  $h^{\alpha}(s)$  is the goal distance of  $\alpha(s)$  in the abstract transition system.
- Abstraction heuristics are safe, goal-aware, admissible and consistent.
- Abstractions can be composed, leading to coarser vs. finer abstractions. Heuristics for finer abstractions dominate those for coarser ones.