Planning and Optimization D2. Abstractions: Formal Definition and Heuristics Malte Helmert and Gabriele Röger Universität Basel #### Content of this Course #### Content of this Course: Heuristics Transition Systems •000000 ### Transition Systems #### Reminder from Chapter A3: #### Definition (Transition System) A transition system is a 6-tuple $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ where - S is a finite set of states. - L is a finite set of (transition) labels, - $\mathbf{c}: L \to \mathbb{R}_0^+$ is a label cost function, - $T \subset S \times L \times S$ is the transition relation, - $s_0 \in S$ is the initial state, and - $S_{\star} \subseteq S$ is the set of goal states. We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in \mathcal{T}$. We also write this as $s \xrightarrow{\ell} s'$, or $s \to s'$ when not interested in ℓ . Note: Transition systems are also called state spaces. ### Transition Systems: Example Note: To reduce clutter, our figures often omit arc labels and costs and collapse transitions between identical states. However, these are important for the formal definition of the transition system. ### Mapping Planning Tasks to Transition Systems #### Reminder from Chapter A3: #### Definition (Transition System Induced by a Planning Task) The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where - $lue{S}$ is the set of all states over state variables V, - L is the set of operators O, - c(o) = cost(o) for all operators $o \in O$, - $T = \{\langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s[o]\},$ - \bullet $s_0 = I$, and - $S_{\star} = \{ s \in S \mid s \models \gamma \}.$ ### Tasks in Finite-Domain Representation #### Notes: - We will focus on planning tasks in finite-domain representation (FDR) while studying abstractions. - All concepts apply equally to propositional planning tasks. - However, FDR tasks are almost always used by algorithms in this context because they tend to have fewer useless (physically impossible) states. - Useless states can hurt the efficiency of abstraction-based algorithms. ### Example Task: One Package, Two Trucks #### Example (One Package, Two Trucks) Consider the following FDR planning task $\langle V, I, O, \gamma \rangle$: - $V = \{p, t_A, t_B\}$ with - $\mod(p) = \{\mathsf{L},\mathsf{R},\mathsf{A},\mathsf{B}\}$ - $\bullet \ \mathsf{dom}(t_{\mathsf{A}}) = \mathsf{dom}(t_{\mathsf{B}}) = \{\mathsf{L},\mathsf{R}\}$ - $\blacksquare I = \{p \mapsto \mathsf{L}, t_\mathsf{A} \mapsto \mathsf{R}, t_\mathsf{B} \mapsto \mathsf{R}\}$ - $O = \{ \mathsf{pickup}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\} \}$ $\cup \{ \mathsf{drop}_{i,j} \mid i \in \{\mathsf{A},\mathsf{B}\}, j \in \{\mathsf{L},\mathsf{R}\} \}$ $\cup \{ \mathsf{move}_{i,i,i'} \mid i \in \{\mathsf{A},\mathsf{B}\}, j,j' \in \{\mathsf{L},\mathsf{R}\}, j \neq j' \}, \text{ where }$ - \blacksquare pickup_{i,j} = $\langle t_i = j \land p = j, p := i, 1 \rangle$ - $drop_{i,j} = \langle t_i = j \land p = i, p := j, 1 \rangle$ - lacksquare move $_{i,j,j'}=\langle t_i=j,t_i:=j',1 angle$ - $\gamma = (p = R)$ Transition Systems ### Transition System of Example Task - State $\{p \mapsto i, t_A \mapsto j, t_B \mapsto k\}$ is depicted as *ijk*. - Transition labels are again not shown. For example, the transition from LLL to ALL has the label pickup_{A.L}. ### **Abstractions** #### **Abstractions** #### Definition (Abstraction) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system. An abstraction (also: abstraction function, abstraction mapping) of \mathcal{T} is a function $\alpha:S\to S^\alpha$ defined on the states of \mathcal{T} , where S^α is an arbitrary set. Without loss of generality, we require that α is surjective. Intuition: α maps the states of \mathcal{T} to another (usually smaller) abstract state space. ### Abstract Transition System #### Definition (Abstract Transition System) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be a transition system, and let $\alpha: S \to S^{\alpha}$ be an abstraction of \mathcal{T} . The abstract transition system induced by α , in symbols \mathcal{T}^{α} , is the transition system $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_{0}^{\alpha}, S_{\star}^{\alpha} \rangle$ defined by: - $T^{\alpha} = \{\langle \alpha(s), \ell, \alpha(t) \rangle \mid \langle s, \ell, t \rangle \in T\}$ - $s_0^{\alpha} = \alpha(s_0)$ - $S^{\alpha}_{+} = \{\alpha(s) \mid s \in S_{+}\}$ ### Concrete and Abstract State Space Let \mathcal{T} be a transition system and α be an abstraction of \mathcal{T} . - T is called the concrete transition system. - lacktriangleright \mathcal{T}^{α} is called the abstract transition system. - Similarly: concrete/abstract state space, concrete/abstract transition, etc. ### Abstraction: Example #### concrete transition system ### Abstraction: Example #### abstract transition system Note: Most arcs represent many parallel transitions. ## Homomorphisms and Isomorphisms ### Homomorphisms and Isomorphisms - The abstraction mapping α that transforms \mathcal{T} to \mathcal{T}^{α} is also called a strict homomorphism from \mathcal{T} to \mathcal{T}^{α} . - Roughly speaking, in mathematics a homomorphism is a property-preserving mapping between structures. - A strict homomorphism is one where no additional features are introduced. A non-strict homomorphism in planning would mean that the abstract transition system may include additional transitions and goal states not induced by α . - We only consider strict homomorphisms in this course. - If α is bijective, it is called an isomorphism between \mathcal{T} and \mathcal{T}^{α} , and the two transition systems are called isomorphic. ### Isomorphic Transition Systems The notion of isomorphic transition systems is important enough to warrant a formal definition: #### Definition (Isomorphic Transition Systems) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$ be transition systems. We say that \mathcal{T} is isomorphic to \mathcal{T}' , in symbols $\mathcal{T} \sim \mathcal{T}'$, if there exist bijective functions $\varphi : S \to S'$ and $\lambda : L \to L'$ such that: - $s \xrightarrow{\ell} t \in T \text{ iff } \varphi(s) \xrightarrow{\lambda(\ell)} \varphi(t) \in T',$ - $c'(\lambda(\ell)) = c(\ell)$ for all $\ell \in L$, - $\varphi(s_0) = s'_0$, and - $s \in S_{\star}$ iff $\varphi(s) \in S'_{\star}$. ### Graph-Equivalent Transition Systems Sometimes a weaker notion of equivalence is useful: #### Definition (Graph-Equivalent Transition Systems) Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ and $\mathcal{T}' = \langle S', L', c', T', s'_0, S'_{\star} \rangle$ be transition systems. We say that \mathcal{T} is graph-equivalent to \mathcal{T}' , in symbols $\mathcal{T} \stackrel{\mathsf{G}}{\sim} \mathcal{T}'$, if there exists a bijective function $\varphi : S \to S'$ such that: - There is a transition $s \xrightarrow{\ell} t \in T$ with $c(\ell) = k$ iff there is a transition $\varphi(s) \xrightarrow{\ell'} \varphi(t) \in T'$ with $c'(\ell') = k$, - ullet $\varphi(s_0)=s_0'$, and - $s \in S_{\star}$ iff $\varphi(s) \in S'_{\star}$. Note: The labels of \mathcal{T} and \mathcal{T}' do not matter except that transitions of the same cost must be preserved. ### Isomorphism vs. Graph Equivalence - \bullet (\sim) and ($\stackrel{\mathsf{G}}{\sim}$) are equivalence relations. - Two isomorphic transition systems are interchangeable for all practical intents and purposes. - Two graph-equivalent transition systems are interchangeable for most intents and purposes. - In particular, their goal distances are identical. - Isomorphism implies graph equivalence, but not vice versa. ### **Abstraction Heuristics** #### Abstraction Heuristics #### Definition (Abstraction Heuristic) Let $\alpha: S \to S^{\alpha}$ be an abstraction of a transition system \mathcal{T} . The abstraction heuristic induced by α , written h^{α} , is the heuristic function $h^{\alpha}:S\to\mathbb{R}_0^+\cup\{\infty\}$ defined as $$h^{\alpha}(s) = h_{\mathcal{T}^{\alpha}}^*(\alpha(s))$$ for all $s \in \mathcal{S}$, where $h_{\mathcal{T}^{\alpha}}^*$ denotes the goal distance function in \mathcal{T}^{α} . #### Notes: - $h^{\alpha}(s) = \infty$ if no goal state of \mathcal{T}^{α} is reachable from $\alpha(s)$ - We also apply abstraction terminology to planning tasks Π , which stand for their induced transition systems. For example, an abstraction of Π is an abstraction of $\mathcal{T}(\Pi)$. ### Abstraction Heuristics: Example $$h^{\alpha}(\{p \mapsto \mathsf{L}, t_{\mathsf{A}} \mapsto \mathsf{R}, t_{\mathsf{B}} \mapsto \mathsf{R}\}) = 3$$ ### Consistency of Abstraction Heuristics (1) #### Theorem (Consistency and Admissibility of h^{α}) Let α be an abstraction of a transition system \mathcal{T} . Then h^{α} is safe, goal-aware, admissible and consistent. #### Proof. We prove goal-awareness and consistency; the other properties follow from these two. Let $$\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$$. Let $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_{\star}^{\alpha} \rangle$. ### Consistency of Abstraction Heuristics (1) #### Theorem (Consistency and Admissibility of h^{lpha}) Let α be an abstraction of a transition system \mathcal{T} . Then h^{α} is safe, goal-aware, admissible and consistent. #### Proof. We prove goal-awareness and consistency; the other properties follow from these two. Let $$\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$$. Let $\mathcal{T}^{\alpha} = \langle S^{\alpha}, L, c, T^{\alpha}, s_0^{\alpha}, S_{\star}^{\alpha} \rangle$. Goal-awareness: We need to show that $h^{\alpha}(s)=0$ for all $s\in S_{\star}$, so let $s\in S_{\star}$. Then $\alpha(s)\in S_{\star}^{\alpha}$ by the definition of abstract transition systems, and hence $h^{\alpha}(s)=h_{\mathcal{T}^{\alpha}}^{*}(\alpha(s))=0$. ### Consistency of Abstraction Heuristics (2) #### Proof (continued). Consistency: Consider any state transition $s \xrightarrow{\ell} t$ of \mathcal{T} . We need to show $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$. ### Consistency of Abstraction Heuristics (2) #### Proof (continued). Consistency: Consider any state transition $s \stackrel{\ell}{\to} t$ of \mathcal{T} . We need to show $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$. By the definition of \mathcal{T}^{α} , we get $\alpha(s) \xrightarrow{\ell} \alpha(t) \in \mathcal{T}^{\alpha}$. Hence, $\alpha(t)$ is a successor of $\alpha(s)$ in \mathcal{T}^{α} via the label ℓ . ### Consistency of Abstraction Heuristics (2) #### Proof (continued). Consistency: Consider any state transition $s \stackrel{\ell}{\to} t$ of \mathcal{T} . We need to show $h^{\alpha}(s) \leq c(\ell) + h^{\alpha}(t)$. By the definition of \mathcal{T}^{α} , we get $\alpha(s) \xrightarrow{\ell} \alpha(t) \in \mathcal{T}^{\alpha}$. Hence, $\alpha(t)$ is a successor of $\alpha(s)$ in \mathcal{T}^{α} via the label ℓ . We get: $$egin{aligned} h^lpha(s) &= h^st_{\mathcal{T}^lpha}(lpha(s)) \ &\leq c(\ell) + h^st_{\mathcal{T}^lpha}(lpha(t)) \ &= c(\ell) + h^lpha(t), \end{aligned}$$ where the inequality holds because perfect goal distances $h_{\mathcal{T}^{\alpha}}^*$ are consistent in \mathcal{T}^{α} . (The shortest path from $\alpha(s)$ to the goal in \mathcal{T}^{α} cannot be longer than the shortest path from $\alpha(s)$ to the goal via $\alpha(t)$.) #### Abstractions of Abstractions Since abstractions map transition systems to transition systems, they are composable: - Using a first abstraction $\alpha: S \to S'$, map \mathcal{T} to \mathcal{T}^{α} . - Using a second abstraction $\beta: S' \to S''$, map \mathcal{T}^{α} to $(\mathcal{T}^{\alpha})^{\beta}$. The result is the same as directly using the abstraction $(\beta \circ \alpha)$: - Let $\gamma: S \to S''$ be defined as $\gamma(s) = (\beta \circ \alpha)(s) = \beta(\alpha(s))$. - Then $\mathcal{T}^{\gamma} = (\mathcal{T}^{\alpha})^{\beta}$. ### Abstractions of Abstractions: Example (1) transition system \mathcal{T} ### Abstractions of Abstractions: Example (2) Transition system \mathcal{T}' as an abstraction of \mathcal{T} ### Abstractions of Abstractions: Example (2) Transition system \mathcal{T}' as an abstraction of \mathcal{T} ### Abstractions of Abstractions: Example (3) Transition system \mathcal{T}'' as an abstraction of \mathcal{T}' ### Abstractions of Abstractions: Example (3) Transition system \mathcal{T}'' as an abstraction of \mathcal{T} ### Coarsenings and Refinements #### Definition (Coarsening and Refinement) Let α and γ be abstractions of the same transition system such that $\gamma = \beta \circ \alpha$ for some function β . Then γ is called a coarsening of α and α is called a refinement of γ . ### Heuristic Quality of Refinements #### Theorem (Heuristic Quality of Refinements) Let α and γ be abstractions of the same transition system such that α is a refinement of γ . Then h^{α} dominates h^{γ} . In other words, $h^{\gamma}(s) \leq h^{\alpha}(s) \leq h^{*}(s)$ for all states s. ### Heuristic Quality of Refinements: Proof #### Proof. Since α is a refinement of γ , there exists a function β with $\gamma=\beta\circ\alpha$. For all states s of Π , we get: $$h^{\gamma}(s) = h_{\mathcal{T}^{\gamma}}^{*}(\gamma(s))$$ $$= h_{\mathcal{T}^{\gamma}}^{*}(\beta(\alpha(s)))$$ $$= h_{\mathcal{T}^{\alpha}}^{\beta}(\alpha(s))$$ $$\leq h_{\mathcal{T}^{\alpha}}^{*}(\alpha(s))$$ $$= h^{\alpha}(s),$$ where the inequality holds because $h_{\mathcal{T}^{\alpha}}^{\beta}$ is an admissible heuristic in the transition system \mathcal{T}^{α} . # Summary ### Summary - An abstraction is a function α that maps the states S of a transition system to another (usually smaller) set S^{α} . - This induces an abstract transition system \mathcal{T}^{α} , which behaves like the original transition system \mathcal{T} except that states mapped to the same abstract state cannot be distinguished. - Abstractions α induce abstraction heuristics h^{α} : $h^{\alpha}(s)$ is the goal distance of $\alpha(s)$ in the abstract transition system. - Abstraction heuristics are safe, goal-aware, admissible and consistent. - Abstractions can be composed, leading to coarser vs. finer abstractions. Heuristics for finer abstractions dominate those for coarser ones.