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Transition Systems

Reminder from Chapter A3:

Definition (Transition System)

A transition system is a 6-tuple 7 = (S, L, ¢, T, so, Sx) where

m S is a finite set of states,

L is a finite set of (transition) labels,

[
mc:lL— ]Rar is a label cost function,
m 7T CSxLxSis the transition relation,
m sp € S is the initial state, and
m S, C S is the set of goal states.
We say that T has the transition (s,¢,s’) if (s,£,s') € T.

) : i ) .
We also write this as s — s’, or s — s’ when not interested in /.

Note: Transition systems are also called state spaces.
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Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.
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Mapping Planning Tasks to Transition Systems

Reminder from Chapter A3:

Definition (Transition System Induced by a Planning Task)

The planning task I = (V. I, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, S«), where

m S is the set of all states over state variables V/,

L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€ S, o applicable in s, s’ = s[o]},
so =/, and

Ss,={seS|skE=~}
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Tasks in Finite-Domain Representation

Notes:

m We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

m All concepts apply equally to propositional planning tasks.

m However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

m Useless states can hurt the efficiency of abstraction-based
algorithms.
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Example Task: One Package Two Trucks

Example (One Package, Two Trucks)

Consider the following FDR planning task (V,/, O,~):
m V = {p, ta,tg} with
m dom(p) = {L,R,A,B}
m dom(ta) = dom(tg) = {L,R}
m/={p—Lta— R tg — R}
m 0= {pICkUp,J | S {Aa B}a./ € {L7 R}}
U {dropi,j ‘ S {A7 B}a./ € {L7 R}}
U{move; ;i | i € {A,B},j,j/ € {L,R},j # j'}, where
m pickup;; =(ti=jAp=j,p:=i1)
m drop; ; = (ti=jAp=1, P —J,1>
m move;j i = (t; = j, ti ==/, 1)

my=(p=R)




Transition Systems Abstractions Homomorphisms / action Heuristics C s and Refinements

000000

Transition System of Example Task

m State {p > i, ta +— j, tg — k} is depicted as ijk.

m Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupy | .
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Abstractions

Definition (Abstraction)
Let 7 =(S,L,c, T,sp, Si) be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of 7 is a function o : S — S® defined on the states of T,
where S¢ is an arbitrary set.

Without loss of generality, we require that « is surjective.

Intuition: o maps the states of 7 to another (usually smaller)
abstract state space.
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Abstract Transition System

Definition (Abstract Transition System)
Let 7 =(S,L,c, T,sp, Si) be a transition system,
and let a: S — 5% be an abstraction of 7.
The abstract transition system induced by «, in symbols 7,
is the transition system 7% = (5%, L,c, T%, s§, SZ) defined by:
m 7%= {{afs), £, a(t)) | (s, 4, t) € T}
m sg = oso)
m SO ={a(s)|se S}

Summar
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Concrete and Abstract State Space

Let 7 be a transition system and « be an abstraction of 7.
m 7 is called the concrete transition system.
m 7% is called the abstract transition system.

m Similarly: concrete/abstract state space,
concrete/abstract transition, etc.
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Abstraction: Example

concrete transition system
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Abstraction: Example

abstract transition system
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Note: Most arcs represent many parallel transitions.
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Homomorphisms and Isomorphisms

m The abstraction mapping « that transforms 7 to T¢
is also called a strict homomorphism from 7 to 7.

m Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

m A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by a.

m We only consider strict homomorphisms in this course.

m If « is bijective, it is called an isomorphism between T and
T<, and the two transition systems are called isomorphic.
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Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough
to warrant a formal definition:

Definition (Isomorphic Transition Systems)

Let T =(S,L,c,T,s0,S5c) and T' = (S", L', ', T', s}, S.)

be transition systems.

We say that 7 is isomorphic to 77, in symbols 7 ~ 77, if there
exist bijective functions ¢ : S — S’ and A\ : L — L’ such that:

shteTiffo(s) 2 o) e T,

(ML) = c(¢) for all £ € L,
¢(sp) = sp, and
s € S, iff p(s) € S..
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Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

Definition (Graph-Equivalent Transition Systems)

Let 7 =(S,L,c, T,5,S) and T' = (S, L', ', T', s, S.)
be transition systems.

We say that 7 is graph-equivalent to 77, in symbols 7 ST,
if there exists a bijective function ¢ : S — S’ such that:

m There is a transition s = t € T with c(l) = k iff
there is a transition ¢(s) 4 o(t) € T" with ¢'(¢') = k,

m p(s0) = s5, and

mseS, iff o(s) €S,

Note: The labels of 7 and 7’ do not matter except that
transitions of the same cost must be preserved.
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Isomorphism vs. Graph Equivalence

(~) and (E) are equivalence relations.

Two isomorphic transition systems are interchangeable
for all practical intents and purposes.

Two graph-equivalent transition systems are interchangeable
for most intents and purposes.

In particular, their goal distances are identical.

Isomorphism implies graph equivalence, but not vice versa.
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Abstraction Heuristics
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Abstraction Heuristics

Definition (Abstraction Heuristic)
Let «: S — S be an abstraction of a transition system 7.

The abstraction heuristic induced by «, written h®,
is the heuristic function h® : S — R} U {oc} defined as

h“(s) = hFa(a(s)) forallse S,

where hZ-, denotes the goal distance function in 7.

Notes:
m h*(s) = oo if no goal state of 7 is reachable from «(s)
m We also apply abstraction terminology to planning tasks [T,

which stand for their induced transition systems.
For example, an abstraction of 1 is an abstraction of 7 ().
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Abstraction Heuristics: Example
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h“({p— L, ta— R, tg = R}) =3
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h®)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.
Let T =(S,L,c, T,sp, S)-

Let 7% = (5%, L,c, T%, s, S¢).

| A
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h*)

Let o be an abstraction of a transition system T .
Then h® is safe, goal-aware, admissible and consistent.

| A\

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let T =(S,L,c, T,sp, S)-

Let 7% = (5%, L,c, T%, s, S¢).

Goal-awareness: We need to show that h®(s) =0 for all s € S,,
so let s € S,. Then a(s) € S by the definition of abstract
transition systems, and hence h%(s) = h%-.(a(s)) = 0.
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h*(s) < c(¢) + h*(t).
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h“(s) < c(¢) + h*(t).

By the definition of 7%, we get «(s) EN a(t) e T
Hence, «(t) is a successor of a(s) in T via the label .
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h“(s) < c(¢) + h*(t).

By the definition of 7%, we get «(s) EN a(t) e T
Hence, «(t) is a successor of a(s) in T via the label .

We get:
h?(s) = hra(a(s))
< c(0) + hira(a(t))
= c(£) + h*(t),

where the inequality holds because perfect goal distances hi.

are consistent in 7.

(The shortest path from a(s) to the goal in T cannot be longer
than the shortest path from «(s) to the goal via a(t).) O

4
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Coarsenings and Refinements
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Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

m Using a first abstraction a: S — S’, map 7 to T*.
m Using a second abstraction 3 : S’ — S”, map T to (7°)5.

The result is the same as directly using the abstraction (8 o «):
m Let v: S — S” be defined as y(s) = (B o a)(s) = B(a(s)).
m Then 77 = (T%).
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Abstractions of Abstractions: Example (1)

transition system 7T



Abstractions of Abstractions: Example (2)

Transition system 77 as an abstraction of T
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Abstractions of Abstractions: Example (2)

Transition system 7' as an abstraction of T
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Abstractions of Abstractions: Example (3)
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Transition system 7" as an abstraction of T’
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Abstractions of Abstractions: Example (3)

Transition system 7" as an abstraction of T
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Coarsenings and Refinements

Definition (Coarsening and Refinement)

Let a and v be abstractions of the same transition system
such that v = 8 o « for some function .

Then ~y is called a coarsening of «
and « is called a refinement of ~.
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Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)

Let o and «y be abstractions of the same transition system
such that « is a refinement of ~y.

Then h® dominates h”.

In other words, h7(s) < h*(s) < h*(s) for all states s.
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Heuristic Quality of Refinements: Proof

Proof

Since « is a refinement of ~,
there exists a function 8 with v = 5o a.

For all states s of 1, we get:

h'(s) = h+(7(s))
= h1-(B(a(s)))
(a(s))
< h7a(a(s))
= h%(s),

= h.

where the inequality holds because hg-a is an admissible heuristic
in the transition system 7. O

4
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Summary

m An abstraction is a function a that maps the states S
of a transition system to another (usually smaller) set S¢.

m This induces an abstract transition system 7%, which behaves
like the original transition system T except that states
mapped to the same abstract state cannot be distinguished.

m Abstractions « induce abstraction heuristics h*: h*(s)

is the goal distance of a(s) in the abstract transition system.
m Abstraction heuristics are safe, goal-aware, admissible

and consistent.

m Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those
for coarser ones.
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