
Planning and Optimization
A6. Positive Normal Form, STRIPS and SAS+

Malte Helmert and Gabriele Röger

Universität Basel

September 28, 2020



Motivation Positive Normal Form STRIPS SAS+ Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs



Motivation Positive Normal Form STRIPS SAS+ Summary

Motivation



Motivation Positive Normal Form STRIPS SAS+ Summary

Example: Freecell

Example (Good and Bad Effects)

If we move K♦ to a free tableau position,
the good effect is that 4♣ is now accessible.
The bad effect is that we lose one free tableau position.



Motivation Positive Normal Form STRIPS SAS+ Summary

What is a Good or Bad Effect?

Question: Which operator effects are good, and which are bad?

Difficult to answer in general, because it depends on context:

Locking our door is good if we want to keep burglars out.

Locking our door is bad if we want to enter.

We now consider a reformulation of propositional planning tasks
that makes the distinction between good and bad effects obvious.



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Formulas, Operators and Tasks

Definition (Positive Formula)

A logical formula ϕ is positive if no negation symbols appear in ϕ.

Note: This includes the negation symbols implied by → and ↔.

Definition (Positive Operator)

An operator o is positive if pre(o) and
all effect conditions in eff(o) are positive.

Definition (Positive Propositional Planning Task)

A propositional planning task 〈V , I ,O, γ〉 is positive
if all operators in O and the goal γ are positive.



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form

Definition (Positive Normal Form)

A propositional planning task is in positive normal form
if it is positive and all operator effects are flat.



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

γ = lecture ∧ bike



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

γ = lecture ∧ bike

Identify state variable v occurring negatively in conditions.



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

γ = lecture ∧ bike

Introduce new variable v̂ with complementary initial value.



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked〉,
〈bike ∧ ¬bike-locked, bike-locked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

γ = lecture ∧ bike

Identify effects on variable v .



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

γ = lecture ∧ bike

Introduce complementary effects for v̂ .



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {〈home ∧ bike ∧ ¬bike-locked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ ¬bike-locked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ ¬bike-locked) B ¬bike)〉}

γ = lecture ∧ bike

Identify negative conditions for v .



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

γ = lecture ∧ bike

Replace by positive condition v̂ .



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Example

Example (Transformation to Positive Normal Form)

V = {home, uni, lecture, bike, bike-locked, bike-unlocked}
I = {home 7→ T, bike 7→ T, bike-locked 7→ T,

uni 7→ F, lecture 7→ F, bike-unlocked 7→ F}
O = {〈home ∧ bike ∧ bike-unlocked,¬home ∧ uni〉,

〈bike ∧ bike-locked,¬bike-locked ∧ bike-unlocked〉,
〈bike ∧ bike-unlocked, bike-locked ∧ ¬bike-unlocked〉,
〈uni, lecture ∧ ((bike ∧ bike-unlocked) B ¬bike)〉}

γ = lecture ∧ bike



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Existence

Theorem (Positive Normal Form)

For every propositional planning task Π, there is an equivalent
propositional planning task Π′ in positive normal form.
Moreover, Π′ can be computed from Π in polynomial time.

Note: Equivalence here means that the transition systems induced
by Π and Π′, restricted to the reachable states, are isomorphic.

We prove the theorem by describing a suitable algorithm.
(However, we do not prove its correctness or complexity.)



Motivation Positive Normal Form STRIPS SAS+ Summary

Positive Normal Form: Algorithm

Transformation of 〈V , I ,O, γ〉 to Positive Normal Form

Replace all operators with equivalent conflict-free operators.
Convert all conditions to negation normal form (NNF).
while any condition contains a negative literal ¬v :

Let v be a variable which occurs negatively in a condition.
V := V ∪ {v̂} for some new propositional state variable v̂

I (v̂) :=

{
F if I (v) = T

T if I (v) = F

Replace the effect v by (v ∧ ¬v̂) in all operators o ∈ O.
Replace the effect ¬v by (¬v ∧ v̂) in all operators o ∈ O.
Replace ¬v by v̂ in all conditions.

Convert all operators o ∈ O to flat operators.

Here, all conditions refers to all operator preconditions,
operator effect conditions and the goal.



Motivation Positive Normal Form STRIPS SAS+ Summary

Why Positive Normal Form is Interesting

In the absence of nontrivial conditional effects, positive normal
form allows us to distinguish good and bad effects easily:

Effects that make state variables true
(add effects) are good.

Effects that make state variables false
(delete effects) are bad.

This is particularly useful for planning algorithms based on
delete relaxation, which we will study later in this course.

(Why restriction “in the absence of nontrivial conditional effects”?)



Motivation Positive Normal Form STRIPS SAS+ Summary

STRIPS



Motivation Positive Normal Form STRIPS SAS+ Summary

STRIPS Operators and Planning Tasks

Definition (STRIPS Operator)

An operator o of a prop. planning task is a STRIPS operator if

pre(o) is a conjunction of state variables, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (STRIPS Planning Task)

A propositional planning task 〈V ,O, I , γ〉 is a STRIPS
planning task if all operators o ∈ O are STRIPS operators
and γ is a conjunction of state variables.

Note: STRIPS operators are conflict-free and flat.

Note:

(For “flat”, we think of atomic effects ` as >B ` here.)

Note:

STRIPS is a special case of positive normal form.



Motivation Positive Normal Form STRIPS SAS+ Summary

STRIPS Operators: Remarks

Every STRIPS operator is of the form

〈v1 ∧ · · · ∧ vn, `1 ∧ · · · ∧ `m〉

where vi are state variables and `j are atomic effects.

Often, STRIPS operators o are described
via three sets of state variables:

the preconditions (state variables occurring in pre(o))
the add effects (state variables occurring positively in eff(o))
the delete effects (state variables occurring negatively in eff(o))

Definitions of STRIPS in the literature often do not require
conflict-freeness. But it is easy to achieve and makes many
things simpler.

There exists a variant called STRIPS with negation
where negative literals are also allowed in conditions.



Motivation Positive Normal Form STRIPS SAS+ Summary

Why STRIPS is Interesting

STRIPS is particularly simple, yet expressive enough
to capture general planning tasks.

In particular, STRIPS planning is no easier
than planning in general (as we will see in Chapter A8).

Many algorithms in the planning literature
are only presented for STRIPS planning tasks
(generalization is often, but not always, obvious).

STRIPS

STanford Research Institute Problem Solver
(Fikes & Nilsson, 1971)



Motivation Positive Normal Form STRIPS SAS+ Summary

Transformation to STRIPS

Not every operator is equivalent to a STRIPS operator.

However, each operator can be transformed into
a set of STRIPS operators whose “combination”
is equivalent to the original operator. (How?)

However, this transformation may exponentially increase
the number of operators. There are planning tasks
for which such a blow-up is unavoidable.

There are polynomial transformations of propositional
planning tasks to STRIPS, but these do not lead to
isomorphic transition systems (auxiliary states are needed).
(They are, however, equivalent in a weaker sense.)



Motivation Positive Normal Form STRIPS SAS+ Summary

SAS+



Motivation Positive Normal Form STRIPS SAS+ Summary

SAS+ Operators and Planning Tasks

Definition (SAS+ Operator)

An operator o of an FDR planning task is a SAS+ operator if

pre(o) is a satisfiable conjunction of atoms, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (SAS+ Planning Task)

An FDR planning task 〈V ,O, I , γ〉 is a SAS+ planning task
if all operators o ∈ O are SAS+ operators
and γ is a satisfiable conjunction of atoms.

Note: SAS+ operators are conflict-free and flat.

Note:

(Same comments as for STRIPS operators apply.)



Motivation Positive Normal Form STRIPS SAS+ Summary

SAS+ Operators: Remarks

Every SAS+ operator is of the form

〈v1 = d1 ∧ · · · ∧ vn = dn, v ′1 := d ′
1 ∧ · · · ∧ v ′m := d ′

m〉

where all vi are distinct and all v ′j are distinct.

Often, SAS+ operators o are described
via two sets of partial assignments:

the preconditions {v1 7→ d1, . . . , vn 7→ dn}
the effects {v ′

1 7→ d ′
1, . . . , v

′
m 7→ d ′

m}



Motivation Positive Normal Form STRIPS SAS+ Summary

SAS+ vs. STRIPS

SAS+ is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

Apart from this difference, all comments for STRIPS
apply analogously.

If all variable domains are binary, SAS+ is essentially
STRIPS with negation.

SAS+

Derives from SAS = Simplified Action Structures
(Bäckström & Klein, 1991)



Motivation Positive Normal Form STRIPS SAS+ Summary

Summary



Motivation Positive Normal Form STRIPS SAS+ Summary

Summary

A positive task helps distinguish good and bad effects.
The notion of positive tasks only exists for propositional tasks.

A positive task with flat operators is in positive normal form.

STRIPS is even more restrictive than positive normal form,
forbidding complex preconditions and conditional effects.

Both forms are expressive enough to capture
general propositional planning tasks.

Transformation to positive normal form is possible
with polynomial size increase.

Isomorphic transformations of propositional planning tasks to
STRIPS can increase the number of operators exponentially;
non-isomorphic polynomial transformations exist.

SAS+ is the analogue of STRIPS for FDR planning tasks.


	Motivation
	

	Positive Normal Form
	

	STRIPS
	

	SAS+
	

	Summary
	


