
Planning and Optimization
A5. Equivalent Operators and Normal Forms

Malte Helmert and Gabriele Röger

Universität Basel

September 28, 2020

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder & Motivation

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder: Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

If χ is a formula over V and e is an effect,
then (χ B e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects!
 Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Reminder: Semantics of Effects

effcond(e, e ′): condition that must be true in the current
state for the effect e ′ to trigger the atomic effect e

add-after-delete semantics (propositional tasks):
if an operator with effect e is applied in state s
and we have both s |= effcond(v , e) and s |= effcond(¬v , e),
then s ′(v) = T in the resulting state s ′.

consistency semantics (finite-domain tasks):
applying an operator with effect e in a state s where
both s |= effcond(v := d , e) and s |= effcond(v := d ′, e)
for values d 6= d ′ is forbidden
 tested via the consistency condition consist(e)

These are very subtle details!
 Can we make our life easier?

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and planning tasks.

Among other things, we consider normal forms that avoid
complicated nesting and subtleties of conflicts.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Notation: Applying Effects and Operator Sequences

Existing notation:

We already write sJoK for the resulting state
after applying operator o in state s.

New extended notation:

If we want to consider an effect e without a precondition,
we write sJeK for sJ〈>, e〉K.

For a sequence π = 〈o1, . . . , on〉 of operators
that are consecutively applicable in s,
we write sJπK for sJo1KJo2K . . . JonK.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence Transformations

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and e ′ over state variables V are equivalent,
written e ≡ e ′, if sJeK = sJe ′K for all states s.

For consistency semantics, this includes the requirement
that sJeK is defined iff sJe ′K is.

Definition (Equivalent Operators)

Two operators o and o ′ over state variables V are equivalent,
written o ≡ o ′, if cost(o) = cost(o ′) and for all states s, s ′ over V ,

o induces the transition s
o−→ s ′ iff o ′ induces the transition s

o′
−→ s ′.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence of Operators and Effects: Theorem

Theorem

Let o and o ′ be operators with pre(o) ≡ pre(o ′), eff(o) ≡ eff(o ′)
and cost(o) = cost(o ′). Then o ≡ o ′.

Note: The converse is not true. (Why not?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Equivalence Transformations for Effects

e1 ∧ e2 ≡ e2 ∧ e1 (1)

(e1 ∧ · · · ∧ en) ∧ (e′1 ∧ · · · ∧ e′m) ≡ e1 ∧ · · · ∧ en ∧ e′1 ∧ · · · ∧ e′m (2)

> ∧ e ≡ e (3)

χ B e ≡ χ′ B e if χ ≡ χ′ (4)

> B e ≡ e (5)

⊥ B e ≡ > (6)

χ1 B (χ2 B e) ≡ (χ1 ∧ χ2) B e (7)

χ B (e1 ∧ · · · ∧ en) ≡ (χ B e1) ∧ · · · ∧ (χ B en) (8)

(χ1 B e) ∧ (χ2 B e) ≡ (χ1 ∨ χ2) B e (9)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Free Operators

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Freeness: Motivation

The add-after-delete semantics makes effects like
(a B c) ∧ (b B ¬c) somewhat unintuitive to interpret.

 What happens in states where a ∧ b is true?

Similarly, it may be unintuitive that an effect like
(u = a B w := a) ∧ (v = b B w := b)
introduces an applicability condition “through the back door”

It would be nicer if

effcond(e, e′) always were the condition
under which the atomic effect e actually materializes
(because of add-after-delete, it is not)
pre(o) always fully described the applicability of o
(because of the consistency condition, is does not)

 introduce normal form where “complicated cases” never arise

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Conflict-Free Effects and Operators

Definition (Conflict-Free)

An effect e over propositional state variables V
is called conflict-free if effcond(v , e) ∧ effcond(¬v , e)
is unsatisfiable for all v ∈ V .

An effect e over finite-domain state variables V
is called conflict-free if effcond(v := d , e) ∧ effcond(v := d ′, e)
is unsatisfiable for all v ∈ V and d , d ′ ∈ dom(v) with d 6= d ′.

An operator o is called conflict-free if eff(o) is conflict-free.

Note: This fixes both of our issues.

Note:

In particular, observe that consist(o) ≡ > for conflict-free o.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Making Operators Conflict-Free

In general, testing whether an operator is conflict-free
is a coNP-complete problem. (Why?)

However, we do not necessarily need such a test.
Instead, we can produce an equivalent conflict-free operator
in polynomial time.

Algorithm: given operator o,

replace all atomic effects ¬v by (¬effcond(v , eff(o)) B ¬v)
replace all atomic effects v := d by (consist(o) B v := d)
replace pre(o) with pre(o) ∧ consist(o) in the FDR case

The resulting operator o ′ is conflict-free and o ≡ o ′. (Why?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effects

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effects: Motivation

CNF and DNF limit the nesting of connectives
in propositional logic.

For example, a CNF formula is

a conjunction of 0 or more subformulas,
each of which is a disjunction of 0 or more subformulas,
each of which is a literal.

Similarly, we can define a normal form that limits
the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effect

Definition (Flat Effect)

An effect e is flat if it is:

a conjunctive effect

whose conjuncts are conditional effects

whose subeffects are atomic effects, and

no atomic effect occurs in e multiple times.

An operator o is flat if eff(o) is flat.

Note: non-conjunctive effects can be considered
as conjunctive effects with 1 conjunct

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Flat Effect: Example

Example

Consider the effect

c ∧ (a B (¬b ∧ (c B (b ∧ ¬d ∧ ¬a)))) ∧ (¬b B¬a)

An equivalent flat (and conflict-free) effect is

(> B c) ∧
((a ∧ ¬c) B ¬b) ∧

((a ∧ c) B b) ∧
((a ∧ c) B ¬d) ∧

((¬b ∨ (a ∧ c)) B ¬a)

Note: for simplicity, we often write (> B e) as e, i.e., omit trivial
effect conditions. We still consider such effects to be flat.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Producing Flat Operators

Theorem

For every operator, an equivalent flat operator and an equivalent
flat, conflict-free operator can be computed in polynomial time.

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Producing Flat Operators: Proof

Proof Sketch.

Let E be the set of atomic effects over variables V .
Every effect e ′ over variables V is equivalent to∧

e∈E (effcond(e, e ′) B e), which is a flat effect.

(Conjuncts of the form (χ B e) where χ ≡ ⊥
can be omitted to simplify the effect.)

To compute a flat operator equivalent to operator o,
replace eff(o) by an equivalent flat effect.

To compute an equivalent conflict-free and flat operator,
first compute a conflict-free operator o ′ equivalent to o,
then replace eff(o ′) by an equivalent flat effect.
(Why not do these in the opposite order?)

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Summary

Reminder & Motivation Equivalence Transformations Conflict-Free Operators Flat Effects Summary

Summary

Equivalences can be used to simplify operators and effects.

In conflict-free operators, the “complicated case”
of operator semantics does not arise.

For flat operators, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

For flat, conflict-free operators, it is easy to determine
the condition under which a given literal is made true
by applying the operator in a given state.

Every operator can be transformed into an equivalent
flat and conflict-free one in polynomial time.

	Reminder & Motivation
	

	Equivalence Transformations
	

	Conflict-Free Operators
	

	Flat Effects
	

	Summary
	

