

Planning and Optimization

A4. Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

September 23, 2020

Planning and Optimization

September 23, 2020 — A4. Planning Tasks

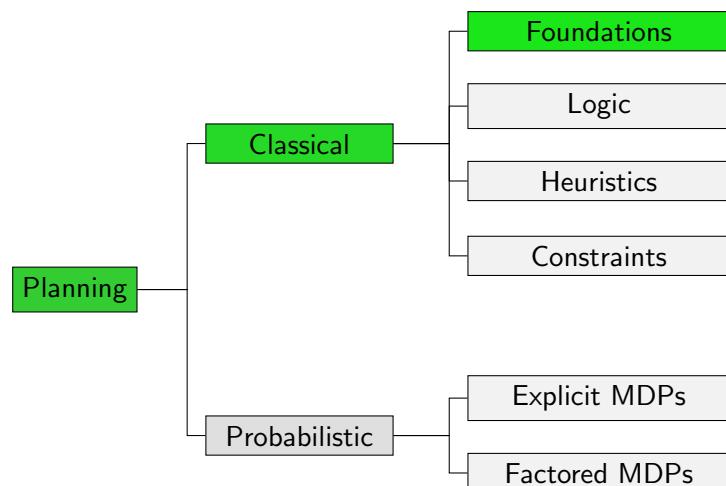
A4.1 State Variables

A4.2 Operators

A4.3 Planning Tasks

A4.4 Summary

Content of this Course



A4.1 State Variables

State Variables

How to specify huge transition systems without enumerating the states?

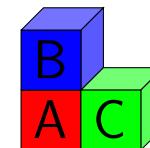
- ▶ represent different aspects of the world in terms of different **state variables** (Boolean or finite domain)
- ▶ individual state variables induce atomic propositions
 - ~~ a state is a **valuation of state variables**
- ▶ n Boolean state variables induce 2^n states
 - ~~ **exponentially more compact** than “flat” representations

Example: $O(n^2)$ Boolean variables or $O(n)$ finite-domain variables with domain size $O(n)$ suffice for blocks world with n blocks

Blocks World State with Propositional Variables

Example

- $s(A\text{-on-}B) = F$
- $s(A\text{-on-}C) = F$
- $s(A\text{-on-table}) = T$
- $s(B\text{-on-}A) = T$
- $s(B\text{-on-}C) = F$
- $s(B\text{-on-table}) = F$
- $s(C\text{-on-}A) = F$
- $s(C\text{-on-}B) = F$
- $s(C\text{-on-table}) = T$



Note: it may be useful to add auxiliary state variables like *A-clear*.

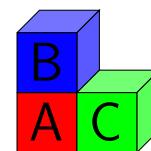
Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

- ▶ *below-a*: {b, c, table}
- ▶ *below-b*: {a, c, table}
- ▶ *below-c*: {a, b, table}

$$\begin{aligned}s(\text{below-}a) &= \text{table} \\ s(\text{below-}b) &= a \\ s(\text{below-}c) &= \text{table} \\ \rightsquigarrow 3^3 &= 27 \text{ states}\end{aligned}$$



Note: it may be useful to add auxiliary state variables like *above-a*.

Propositional State Variables

Definition (Propositional State Variable)

A **propositional state variable** is a symbol X .

Let V be a finite set of propositional state variables.

A **state** s over V is a valuation for V , i.e., a truth assignment $s : V \rightarrow \{\mathbf{T}, \mathbf{F}\}$.

A **formula** over V is a propositional logic formula using V as the set of atomic propositions.

Propositional State Variables

Definition (Finite-Domain State Variable)

A **finite-domain state variable** is a symbol v with an associated **domain** $\text{dom}(v)$, which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A **state** s over V is an assignment $s : V \rightarrow \bigcup_{v \in V} \text{dom}(v)$ such that $s(v) \in \text{dom}(v)$ for all $v \in V$.

A **formula** over V is a propositional logic formula whose atomic propositions are of the form $v = d$ where $v \in V$ and $d \in \text{dom}(v)$.

Slightly extending propositional logic, we treat states s over finite-domain variables as **logical valuations**

where $s \models v = d$ iff $s(v) = d$.

State Variables: Either/Or

- ▶ **State variables** are the basis of compact descriptions of transition systems.
- ▶ For a given transition system, we will **either** use **propositional** or **finite-domain** state variables. We will not mix them.
- ▶ However, finite-domain variables can have **any** finite domain including the domain $\{\mathbf{T}, \mathbf{F}\}$, so are in some sense a proper generalization of propositional state variables.

From State Variables to Succinct Transition Systems

Problem:

- ▶ How to **succinctly** represent **transitions** and **goal states**?

Idea: Use **formulas** to describe sets of states

- ▶ **states**: all assignments to the state variables
- ▶ **goal states**: defined by a formula
- ▶ **transitions**: defined by **operators** (see following section)

A4.2 Operators

Syntax of Operators

Definition (Operator)

An **operator** o over state variables V is an object with three properties:

- ▶ a **precondition** $pre(o)$, a formula over V
- ▶ an **effect** $eff(o)$ over V , defined on the following slides
- ▶ a **cost** $cost(o) \in \mathbb{R}_0^+$

Notes:

- ▶ Operators are also called **actions**.
- ▶ Operators are often written as triples $(pre(o), eff(o), cost(o))$.
- ▶ This can be abbreviated to pairs $(pre(o), eff(o))$ when the cost of the operator is irrelevant.

Operators: Intuition

Intuition for operators o :

- ▶ The operator precondition describes the set of states in which a transition labeled with o can be taken.
- ▶ The operator effect describes how taking such a transition changes the state.
- ▶ The operator cost describes the cost of taking a transition labeled with o .

Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

- ▶ If $v \in V$ is a propositional state variable, then v and $\neg v$ are effects (**atomic effect**).
- ▶ If $v \in V$ is a finite-domain state variable and $d \in \text{dom}(v)$, then $v := d$ is an effect (**atomic effect**).
- ▶ If e_1, \dots, e_n are effects, then $(e_1 \wedge \dots \wedge e_n)$ is an effect (**conjunctive effect**).
The special case with $n = 0$ is the **empty effect** \top .
- ▶ If χ is a formula over V and e is an effect, then $(\chi \triangleright e)$ is an effect (**conditional effect**).

Parentheses can be omitted when this does not cause ambiguity.

Effects: Intuition

Intuition for effects:

- ▶ **Atomic effects** can be understood as assignments that update the value of a state variable.
 - ▶ For propositional state variables, v means " $v := \top$ " and $\neg v$ means " $v := \perp$ ".
- ▶ A **conjunctive effect** $e = (e_1 \wedge \dots \wedge e_n)$ means that all subeffects e_1, \dots, e_n take place simultaneously.
- ▶ A **conditional effect** $e = (\chi \triangleright e')$ means that subeffect e' takes place iff χ is true in the state where e takes place.

Semantics of Effects

Definition (Effect Condition for an Effect)

Let e be an atomic effect.

The **effect condition** $\text{effcond}(e, e')$ under which e triggers given the effect e' is a propositional formula defined as follows:

- ▶ $\text{effcond}(e, e) = \top$
- ▶ $\text{effcond}(e, e') = \perp$ for atomic effects $e' \neq e$
- ▶ $\text{effcond}(e, (e_1 \wedge \dots \wedge e_n)) = \text{effcond}(e, e_1) \vee \dots \vee \text{effcond}(e, e_n)$
- ▶ $\text{effcond}(e, (\chi \triangleright e')) = \chi \wedge \text{effcond}(e, e')$

Intuition: $\text{effcond}(e, e')$ represents the condition that must be true in the current state for the effect e' to lead to the atomic effect e

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.

Let s be a state over V , and let o be an operator over V .

Operator o is **applicable** in s if $s \models \text{pre}(o)$.

If o is applicable in s , the **resulting state** of applying o in s , written $s[o]$, is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} \top & \text{if } s \models \text{effcond}(v, e) \\ \perp & \text{if } s \models \text{effcond}(\neg v, e) \wedge \neg \text{effcond}(v, e) \\ s(v) & \text{if } s \not\models \text{effcond}(v, e) \vee \text{effcond}(\neg v, e) \end{cases}$$

where $e = \text{eff}(o)$.

Add-after-Delete Semantics

Note:

- ▶ The definition implies that if a variable is simultaneously “added” (set to \top) and “deleted” (set to \perp), the value \top takes precedence.
- ▶ This is called **add-after-delete semantics**.
- ▶ This detail of semantics is somewhat arbitrary, but has proven useful in applications.
- ▶ For finite-domain variables, there are no distinguished values like “true” and “false”, and a **different** semantics is used.

Conflicting Effects and Consistency Condition

- ▶ What should an effect of the form $v := a \wedge v := b$ mean?
- ▶ For finite-domain representations, the accepted semantics is to make this **illegal**, i.e., to make an operator **inapplicable** if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The **consistency condition** for e , $\text{consist}(e)$ is defined as

$$\bigwedge_{v \in V} \bigwedge_{d, d' \in \text{dom}(v), d \neq d'} \neg(\text{effcond}(v := d, e) \wedge \text{effcond}(v := d', e)).$$

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables.

Let s be a state over V , and let o be an operator over V .

Operator o is **applicable** in s if $s \models \text{pre}(o) \wedge \text{consist}(\text{eff}(o))$.

If o is applicable in s , the **resulting state** of applying o in s , written $s \llbracket o \rrbracket$, is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} d & \text{if } s \models \text{effcond}(v := d, \text{eff}(o)) \text{ for some } d \in \text{dom}(v) \\ s(v) & \text{otherwise} \end{cases}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto \top, b \mapsto \top, c \mapsto \top, d \mapsto \top\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned} \text{effcond}(a, \text{eff}(o)) &= \text{effcond}(a, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= \text{effcond}(a, \neg a) \vee \text{effcond}(a, \neg c \triangleright \neg b) \\ &= \perp \vee (\neg c \wedge \text{effcond}(a, \neg b)) \\ &= \perp \vee (\neg c \wedge \perp) \\ &\equiv \perp \quad \rightsquigarrow \text{false in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto \top, b \mapsto \top, c \mapsto \top, d \mapsto \top\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned} \text{effcond}(\neg a, \text{eff}(o)) &= \text{effcond}(\neg a, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= \text{effcond}(\neg a, \neg a) \vee \text{effcond}(\neg a, \neg c \triangleright \neg b) \\ &= \top \vee \text{effcond}(\neg a, \neg c \triangleright \neg b) \\ &\equiv \top \quad \rightsquigarrow \text{true in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto \top, b \mapsto \top, c \mapsto \top, d \mapsto \top\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned} \text{effcond}(b, \text{eff}(o)) &= \text{effcond}(b, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= \text{effcond}(b, \neg a) \vee \text{effcond}(b, \neg c \triangleright \neg b) \\ &= \perp \vee (\neg c \wedge \text{effcond}(b, \neg b)) \\ &= \perp \vee (\neg c \wedge \perp) \\ &\equiv \perp \quad \rightsquigarrow \text{false in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(\neg b, \text{eff}(o)) &= \text{effcond}(\neg b, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= \text{effcond}(\neg b, \neg a) \vee \text{effcond}(\neg b, \neg c \triangleright \neg b) \\ &= \perp \vee (\neg c \wedge \text{effcond}(\neg b, \neg b)) \\ &= \perp \vee (\neg c \wedge T) \\ &\equiv \neg c \quad \rightsquigarrow \text{false in state } s\end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$ and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $\text{eff}(o)$:

$$\begin{aligned}\text{effcond}(c, \text{eff}(o)) &\equiv \perp \quad \rightsquigarrow \text{false in state } s \\ \text{effcond}(\neg c, \text{eff}(o)) &\equiv \perp \quad \rightsquigarrow \text{false in state } s \\ \text{effcond}(d, \text{eff}(o)) &\equiv \perp \quad \rightsquigarrow \text{false in state } s \\ \text{effcond}(\neg d, \text{eff}(o)) &\equiv \perp \quad \rightsquigarrow \text{false in state } s\end{aligned}$$

The resulting state of applying o in s is the state $\{a \mapsto F, b \mapsto T, c \mapsto T, d \mapsto T\}$.

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently, we use auxiliary state variables $A\text{-clear}$, $B\text{-clear}$, and $C\text{-clear}$ to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- ▶ $\langle A\text{-clear} \wedge A\text{-on-table} \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-table} \wedge \neg B\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-table} \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-table} \wedge \neg C\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}B, A\text{-on-table} \wedge \neg A\text{-on-}B \wedge B\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}C, A\text{-on-table} \wedge \neg A\text{-on-}C \wedge C\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}B \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-}B \wedge B\text{-clear} \wedge \neg C\text{-clear} \rangle$
- ▶ $\langle A\text{-clear} \wedge A\text{-on-}C \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-}C \wedge C\text{-clear} \wedge \neg B\text{-clear} \rangle$
- ▶ ...

Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number $b_3 b_2 b_1 b_0$ represented by 4 state variables b_0, \dots, b_3 :

precondition:

$$\neg b_0 \vee \neg b_1 \vee \neg b_2 \vee \neg b_3$$

effect:

$$\begin{aligned} &(\neg b_0 \triangleright b_0) \wedge \\ &((\neg b_1 \wedge b_0) \triangleright (b_1 \wedge \neg b_0)) \wedge \\ &((\neg b_2 \wedge b_1 \wedge b_0) \triangleright (b_2 \wedge \neg b_1 \wedge \neg b_0)) \wedge \\ &((\neg b_3 \wedge b_2 \wedge b_1 \wedge b_0) \triangleright (b_3 \wedge \neg b_2 \wedge \neg b_1 \wedge \neg b_0))\end{aligned}$$

A4.3 Planning Tasks

Planning Tasks

Definition (Planning Task)

A **planning task** is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- ▶ V is a finite set of **state variables**,
- ▶ I is a valuation over V called the **initial state**,
- ▶ O is a finite set of **operators** over V , and
- ▶ γ is a formula over V called the **goal**.

V must either consist only of propositional or only of finite-domain state variables.

In the first case, Π is called a **propositional planning task**, otherwise an **FDR planning task** (finite-domain representation).

Note: Whenever we just say **planning task** (without “propositional” or “FDR”), both kinds of tasks are allowed.

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task $\Pi = \langle V, I, O, \gamma \rangle$ **induces** the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_* \rangle$, where

- ▶ S is the set of all states over V ,
- ▶ L is the set of operators O ,
- ▶ $c(o) = \text{cost}(o)$ for all operators $o \in O$,
- ▶ $T = \{ \langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s[o] \}$,
- ▶ $s_0 = I$, and
- ▶ $S_* = \{ s \in S \mid s \models \gamma \}$.

Planning Tasks: Terminology

- ▶ Terminology for transition systems is also applied to the planning tasks Π that induce them.
- ▶ For example, when we speak of the **states of Π** , we mean the states of $\mathcal{T}(\Pi)$.
- ▶ A sequence of operators that forms a solution of $\mathcal{T}(\Pi)$ is called a **plan** of Π .

Satisficing and Optimal Planning

By **planning**, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π

Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π

Output: a plan for Π with minimal cost among all plans for Π ,
or **unsolvable** if no plan for Π exists

A4.4 Summary

Summary

- ▶ **Planning tasks** compactly represent transition systems and are suitable as inputs for planning algorithms.
- ▶ They are based on concepts from **propositional logic**, enhanced to model state change.
- ▶ Planning tasks can be **propositional** or **finite-domain**.
- ▶ **States** of planning tasks are assignments to its state variables.
- ▶ **Operators** of propositional planning tasks describe **in which situations** (precondition), **how** (effect) and at which **cost** the state of the world can be changed.
- ▶ In **satisficing planning**, we must find a solution for a planning task (or show that no solution exists).
- ▶ In **optimal planning**, we must additionally guarantee that generated solutions are of minimal cost.