Planning and Optimization

M. Helmert, G. Roger University of Basel
P. Ferber, T. Keller, S. Sievers Fall Semester 2020

Exercise Sheet G
Due: December 13, 2020

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

The files required for this exercise are in the directory ezercise-g of the course repository (https:
// github. com/ aibasel-teaching/planopt-hs20). All paths are relative to this directory.
Update your clone of the repository with git pull to see the files. In the virtual machine,
/vagrant/plan-opt-hs20 is the repository.

Exercise G.1 (941 marks)(Lecture G2)

Recall the SSP example from the lecture where an agent should move from an initial state to the
goal state in a grid world. The figure below shows the grid with the initial state and the goal
state. Possible moves are N, E, S, and W for the four directions, but actions are only applicable
if they would not lead the agent out of the grid. In the goal state, no actions are applicable. The
numbers in the grid indicate the probabilities p of an action to succeed, i.e., to move the agent
in the intended direction. With probability 1 — p, the agents stays where she is. The costs of
applying an action is 1 in all cells except in the striped cell (2, 3), where it is 3.

Sx
4 0.4 1.0 1.0 1.0

S0

In this exercise, you have to implement RTDP and LRTDP for the grid world problem. You
only have to modify the file rtdp/rtdp.py. Please do not modify other files and only submit file
rtdp/rtdp.py.

(a) Complete all functions with a TODO in file rtdp/rtdp.py.

You can make yourself familiar with the problem representation by looking at rtdp/instance. py.
Ezecuting that file prints the probabilities and costs of all cells as well as the applicable ac-
tions for all states and the resulting successors. We recommend to implement the functions

in this given order, since you should never need to use a function further down in the order

i any of the earlier functions.

e heuristic: implement the Manhattan distance heuristic. For state (2, 3), the heuristic
should be hard-coded to return 4 instead of the Manhattan distance.

e compute_gq-value: compute the Q-value for a given state and action pair and a given
value function.



compute_greedy_action_and value: for a given state and a given value function, com-
pute the best applicable action and the resulting @Q-value of that action.

get_greedy_policy: for a given value function, compute a mapping from states to
greedy actions.

sample_successor: for a given state and action, sample a successor of all possible
successors according to the probability.

perform_trial: implement the trial function of RTDP.

residual: compute the residual of a given state under a given value function.
check_solved: implement the CheckSolved function of LRTDP.

visit: implement the visit function of LRTDP.

(b) Run both algorithms using rtdp/rtdp.py rtdp and rtdp/rtdp.py lrtdp. How do the
algorithms compare? Note that the algorithms are non-deterministic and you might want
to execute them several times to get a clear picture.

Exercise G.2 (4 marks)(Lecture G3)

Assume you want to travel from the University to Lausen and want to minimize travel time. You
can take tram A now, tram B in 7 minutes or tram C in 15 minutes (if you decide not to go now
you can later still decide if you take the tram in 7 or 15 minutes). Depending on which tram you
take you have a chance to miss your train and need to take the next one 30 minutes later. The
travel time for tram and train (without waiting) is 30 minutes. For tram A, you will always catch
the early train, for tram B you catch the early train with probability 0.5 and for tram C with
probability 0.2. The following graph is one possible representation of this problem as an SSP:

Calculate the expected cost for choosing A or W1 in I when using Hindsight Optimization. What
would the optimal policy do?



Exercise G.3 (6 marks)(Lecture G4)

Execute four iterations of MCTS for the task from Exercise G.1. Some steps of MCTS rely on
policies and random sampling of outcomes during selection and simulation. To make the steps in
the exercise interesting, use the following policies and choices.

e The tree policy always chooses the action with lowest current expected cost.

e The default policy always goes north if this action is applicable, or east if going north would
leave the grid.

e When selecting actions in the selection phase, also use the default policy.

e Assume that outcomes are sampled in the following order
(v means that the movement is successful, and X means that the movement fails):

First iteration: v, v, v, vV, X, X, X, /, X, X
Second iteration: X, X, X, X, /', X, X,/ , /', /
Third iteration: X, v, vV, X, /., v/, X, X, X, X
— Fourth iteration: v, X, X, X, X, /', X. /', X,/

Submission rules:

e Exercise sheets must be submitted in groups of two or three students. Please submit one
single copy of the exercises per group (only one member of the group does the submission).

e Create a single PDF file (ending .pdf) for all non-programming exercises. If you want to
submit handwritten parts, include their scans in the single PDF in a reasonable resolution,
so that they are readable but the PDF size is not astronomically large. Put the names of all
group members on top of the first page. Use page numbers or put your names on each page.
Make sure your PDF has size A4 (fits the page size if printed on A4).

e For programming exercises, only create and submit those code textfiles required by the
exercise. Put your names in a comment on top of each file. Make sure your code compiles
and test it!

e For the submission, you can either upload the single PDF or prepare a ZIP file (ending .zip,
.tar.gz or .tgz; not .rar or anything else) containing the single PDF and the code textfile(s)
and nothing else. Please do not use directories within the ZIP, i.e., zip the files directly.

e Name all files without spaces.

e Only upload one submission per group. Do not upload several versions, i.e., if you need to
resubmit, use the same file name again so that the previous submission is overwritten.



