
Planning and Optimization

M. Helmert, G. Röger
P. Ferber, T. Keller, S. Sievers

University of Basel
Fall Semester 2020

Exercise Sheet D
Due: November 15, 2020

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

Exercise D.1 (4 marks)(Lecture D2)

Consider the following graph G depicting a simple transition system. Assume that operators oi
have cost 1, while operators o′i have cost 5. As usual, an incoming arrow indicates the initial state,
and goal states are marked by a double rectangle.

G : s1 s2 s3 s4

s5 s6 s7 s8 s9

o2
o′4 o′7

o
′
6o

′
3

o′1 o′5

o9 o11

o′8

o′10

o12

o13

Provide the following graphs:

• a graph G1 which is isomorphic to G but not the same.

• a graph G2 which is graph equivalent to G but not isomorphic to it.

• a graph G3 which is a strict homomorphism of G but not graph equivalent to it.

• a graph G4 which is a non-strict homomorphism of G but not graph equivalent to it.

• a graph G5 that is the transition system induced by the abstraction α that maps states that
are in the column i in the image above to the abstract state si. For example, the two states
in the first column are mapped to an abstract state t1, the two states in the second column
to an abstract state t2, and so on.

• a graph G6 that is the induced transition system of an abstraction β that is a non-trivial
coarsening of α.

• a graph G7 that is the induced transition system of an abstraction γ that is a non-trivial
refinement of β but different from α.

In all graphs, highlight an optimal path and compute its cost. For graphs G1–G4, justify (one
sentence is enough) why they don’t have the property they are not supposed to have, for example,
why G2 is not isomorphic to G. For graph G5, justify why the graph is an abstraction of G. For
graphs G6–G7, justify why the graphs are a coarsening and a refinement.

Exercise D.2 (2 marks)(Lecture D3)

Point out the problems with the following ideas for abstraction mappings in the beleaguered castle
domain:

α1: For each card value v there is one abstract state representing all world states where v is the
highest undiscarded value.

α2: A state is mapped to an abstract state by ignoring the suit of the top card on each tableau
pile.



α3: There are up to n = 106 abstract states s0, . . . , sn. A world state s is mapped to the abstract
state sk, where k is the MD5 hash of s modulo 106.

α4: All states s with 0 ≤ h∗(s) < 5 are mapped to the first abstract state, all states s with
5 ≤ h∗(s) < 10 are mapped to the second abstract state, and so on.

Exercise D.3 (1+4+2 marks)(Lecture D3)

(a) Prove the following claim from the lecture: let α1 and α2 be abstractions of a transition
system T . If no label of T affects both T α1 and T α2 , then α1 and α2 are orthogonal.

(b) Let Π be a SAS+ planning task that is not trivially unsolvable and does not contain trivially

inapplicable operators, and let P be a pattern for Π. Prove that T (Π|P )
G∼ T (Π)πP , i.e.,

T (Π|P ) is graph-equivalent to T (Π)πP .

(c) Discuss the theorem from exercise (d). First, discuss why it is relevant. Why would we need
to define Π|P , if we already saw that πP is a valid abstraction of T (Π), and hence we could
use hπP as our heuristic? Second, discuss why is it important to exclude trivially unsolvable
tasks or trivially inapplicable operators.

Exercise D.4 (3+2+1+2)(Lecture D4)

Parking Space Parking Space Parking Space

In this exercise, we work with the shown driving scenario. There are 3 street segments s1, s2, s3.
You can drive from one segment to an adjacend segment if the traffic light is green and if you are
on the correct lane, i.e., if you are on the bottom lane you can drive only to the right. You can
switch lanes only at the end of the road. It is your goal to pick up a passenger and then to park
in the middle segment.
More formally, the scenario is defined by the following FDR Π = 〈V,O, I, δ〉 task:

• V = {Segment ,Lane,Passenger ,TrafficLight1 ,TrafficLight2}, with
dom(Segment) = {s1, s2, s3}
dom(Lane) = {b, t, p}
dom(Passenger) = {s1, s2, s3, car}
dom(TrafficLighti) = {r, y, g} for i ∈ {1, 2}

• I = {Segment = s1,Lane = b,Passenger = s3,TrafficLight1 = r,TrafficLight2 = y}

• O =
{〈Segment = si ∧ Lane = b ∧ TrafficLighti = g,Segment := si + 1〉 | i ∈ {1, 2}} ∪
{〈Segment = si ∧ Lane = t ∧ TrafficLighti−1 = g ,Segment := si − 1〉 | i ∈ {2, 3}} ∪
{〈Segment = s1 ∧ Lane = t,Lane := b〉} ∪
{〈Segment = s3 ∧ Lane = b,Lane := t〉} ∪
{〈Lane = t,Lane := p〉} ∪
{〈Segment = si ∧ Passenger = si,Passenger = car〉 | i ∈ {1, 2, 3} ∪
{〈>,TrafficLighti = x〉 | i ∈ {1, 2} and x ∈ {r, y, g}}

• δ = Segment = s2 ∧ Lane = p ∧ Passenger = car



(a) Provide the syntactic projection Π|P of Π for the pattern P = {Segment ,Lane}.

(b) Draw the transition system induced by the task Π|P . Do not label the transitions. If there
are multiple transitions from one state to another, draw only one arrow for all transitions.

(c) Calculate for every state in the transition system of (b) its distance to the goal.

(d) A PDB stores the goal distance of all abstract states in a one dimensional lookup table and
uses a perfect hash function to calculate for a given state its table index. Provide the lookup
table for the pattern P = {Segment ,Lane}. Use the distances calculated in (c). Annotate
every table entry with its associated abstract state. Order the variables in the pattern as
follows: Segment ,Lane

Exercise D.5 (3+3+1 marks)(Lecture D5)

In the Sokoban domain, a worker has to push boxes to goal positions, but cannot pull them. The
figure below illustrates an example problem. The red dot denotes the initial position of the worker,
the blue cells denote the initial positions of the boxes, and the green cells denote the goal positions
of the boxes, where it does not matter which box is finally located at which goal position. The
letters (A – V) are only shown to indicate the cells.

A B C D

E F G H

I J K L M

N O P Q R

S T U V

Consider the SAS+ representation of this Sokoban problem with variables posw, posb1, posb2, posb3
(which denote the positions of the worker and the three boxes), atgoalb1, atgoalb2, atgoalb3 (which
indicate whether the boxes are at goal positions), and contentA, . . . , contentV (which denote the
content of the individual cells). Formally, the variable domains are defined as follows:

• dom(posw) = dom(posb1) = dom(posb2) = dom(posb3) = {A, . . . , V }

• dom(atgoalb1) = dom(atgoalb2) = dom(atgoalb3) = {T,F}

• dom(contentA) = · · · = dom(contentV ) = {empty , w, b1, b2, b3}

The initial state is defined by the set consisting of the following mappings:

• posw 7→ A, posb1 7→ F , posb2 7→ O, posb3 7→ N , atgoalb1 7→ F, atgoalb2 7→ F, atgoalb3 7→ F

• contentF 7→ b1, contentO 7→ b2, contentN 7→ b3, contentA 7→ w

• contentx 7→ empty for all x ∈ {A, . . . , V } \ {A,F,N,O}

The goal is given by the formula atgoalb1 = T∧atgoalb2 = T∧atgoalb3 = T. The operators (move
and push) are defined as usual (recall that it is not allowed to pull boxes). We call cells c and c′

adjacent if c′ is either above, below, left or right to c (i.e., diagonal cells are not adjacent).

• move operators: For adjacent cells c and c′, the worker can move from c to c′ if the worker
is currently at c and c′ is empty. After moving, c is empty and the worker is at c′.

• push operators: For cells c, c′, c′′ such that c is adjacent to c′ in direction X iff c′ is adjacent
to c′′ in direction X for X ∈ {above,below, left, right}, the worker can push a box bi from
c′ to c′′ if the worker is at c, the box is at c′ and c′′ is empty. After pushing, c is empty, the
worker is at c′, and the box is at c′′. atgoalbi is set depending on whether the box moved
from a nongoal to a goal position or vice versa.



Consider the pattern collection C that consists of exactly the following patterns:

• P1 = {atgoalb1, posb1}

• P2 = {atgoalb1, contentH , contentM}

• P3 = {atgoalb3, posw}

• P4 = {atgoalb3, contentA}

• P5 = {atgoalb2, posb2, atgoalb3}

• P6 = {posb1, contentD, contentE}

• P7 = {atgoalb2, posb2}

(a) Simplify the collection by removing trivial patterns and causally irrelevant variables from
patterns.

(b) Construct the compatibility graph for C and determine the maximal cliques.

(c) Provide the canonical heuristic hC and simplify it with help of the Dominated Sum Theorem
if possible.

Exercise D.6 (2+3 marks)(Lecture D8)

Consider a set X = {T1, T2} of abstract transition systems with identical label set L = {l1, . . . , l7}
and cost function c such that c(l1) = 1 and c(l2) = c(l3) = c(l4) = c(l5) = 2. T1 and T2 are
depicted graphically below.

A

B C D

E

l1
l1

l4

l2
l2

l5
l3

T1

1 2 3
l1, l3

l4 l5

l2

l1, l3

T2

(a) In the lecture, we have seen that merge-and-shrink is a powerful framework for computing
abstractions through the means of applying transformations to factored transition systems.
Shrinking is one type of such transformations, and it means to apply an abstraction to a single
transition system of the factored transition system. In practice, given a transition system
and a size limit imposed on it, the question is how to come up with a good abstraction of the
factor. This is what a shrink strategy does: it is an algorithm that computes an abstraction
of a given transition system so that its new size is guaranteed to obey a given limit.

For this exercise, we ignore the size limit and consider the following two simple shrink
strategies. (Maximal) h-preserving shrinking abstracts all states with the same h-value to
the same abstract state. f -preserving shrinking abstracts all states that have the same
h-value and the same g-value, hence the name.

Graphically provide the transition systems T ′1 and T ′′1 that result from shrinking T1 with
h-preserving and f -preserving shrinking, respectively.



(b) Graphically provide the transition systems T ′1 ⊗ T2, T ′′1 ⊗ T2, and T1 ⊗ T2. How do they
compare with respect to size and heuristic value of the initial state?

Exercise D.7 (2+2+3 marks)(Lecture D8)

In this exercise, you are asked to implement and evaluate a shrink strategy in Fast Downward. In
the lecture, we have seen that merge-and-shrink is a powerful framework for computing abstrac-
tions through the means of applying transformations to factored transition systems. Shrinking
is one type of such transformations, and it means to apply an abstraction to a single transition
system of the factored transition system. In practice, given a transition system and a size limit
imposed on it, the question is how to come up with a good abstraction of the factor. This is
what a shrink strategy does: it is an algorithm that computes an abstraction of a given transition
system so that its new size is guaranteed to obey a given limit.
In Fast Downward, a shrink strategy is given a transition system and an object that allows to
retrieve distances for states of the transition system. The strategy then has to compute an equiva-
lence relation over the states, i.e., a partitioning over states. All states of the same equivalence class
(or partition) are then mapped to the same new abstract state. Your task will be to implement
the logic of the strategy for computing the state equivalence relation (the state partitioning).

(a) In fast-downward/src/search/merge-and-shrink/shrink h preserving.cc you find an
incomplete implementation of a h-preserving shrink strategy that aims at abstracting all
states with the same h-value to the same abstract state. It works as follows: first, partition
all states of the transition system according to their h-value. Then, iterate over all partitions
in increasing order of their h-value and simply assign all states of a partition to the same
equivalence class in the result, as long as this does not violate the given size limit. If the size
of the resulting equivalence relation reaches the given size limit, then the strategy cannot
turn each partition into a separate equivalence class anymore, but instead, it assigns all states
of all remaining partitions to the last equivalence class created (i.e., the last equivalence class
possibly holds states that have different h-values due to the size limit).

You can test your strategy using
./fast-downward/fast-downward.py --alias mas-h-preserving-x blocks/probBLOCKS-6-0.pddl

where x ∈ {1, 10, 100, 1000} denotes the size limit imposed on transition systems.

(b) In fast-downward/src/search/merge-and-shrink/shrink random.cc you find an incom-
plete implementation of a random shrink strategy that abstracts states uniformly at random.
This can be implemented as follows: Iterate over all states in a random order. As long as
the size of the resulting equivalence relation has not reached the imposed size limit, assign
the state to its own equivalence class, thus increasing the size of the resulting equivalence
relation by 1. Once the size limit is reached, assign the state to a random equivalence class
(in this case, there are exactly as many equivalence classes as the size limit allows).

You can test your strategy using
./fast-downward/fast-downward.py --alias mas-random-x blocks/probBLOCKS-6-0.pddl

where x ∈ {1, 10, 100, 1000} denotes the size limit imposed on transition systems.

(c) Evaluate both strategies on the tasks in the directory blocks, using all four size limits
({1, 10, 100, 1000}). You can limit time for each run to 1 minute. For each run, report the
runtime of the merge-and-shrink algorithm (“Merge-and-shrink algorithm runtime: ”), the
total runtime (“Total time: ”), and the number of expanded states (“Expanded until last
jump: ”), which denotes the number of expanded states excluding the last f -layer of the A∗

search. (On the last f -layer, the number of expanded states only depends on tie-breaking
which we don’t want to include in our evaluation.) Discuss the results. (In particular,
explain the results. Note that this can, to some extent, also be done without a working
implementation.)

Please structure your table as follows:



Shrink strategy h− 1 h− 10 h− 100 h− 1000 r − 1 r − 10 r − 100 r − 1000

blocks 6-0, M&S:
blocks 6-0, Exp:
blocks 6-0, Total:
blocks 8-0, M&S:
. . .

Submission rules:

• Exercise sheets must be submitted in groups of two or three students. Please submit one
single copy of the exercises per group (only one member of the group does the submission).

• Create a single PDF file (ending .pdf) for all non-programming exercises. If you want to
submit handwritten parts, include their scans in the single PDF in a reasonable resolution,
so that they are readable but the PDF size is not astronomically large. Put the names of all
group members on top of the first page. Use page numbers or put your names on each page.
Make sure your PDF has size A4 (fits the page size if printed on A4).

• For programming exercises, only create and submit those code textfiles required by the
exercise. Put your names in a comment on top of each file. Make sure your code compiles
and test it!

• For the submission, you can either upload the single PDF or prepare a ZIP file (ending .zip,
.tar.gz or .tgz; not .rar or anything else) containing the single PDF and the code textfile(s)
and nothing else. Please do not use directories within the ZIP, i.e., zip the files directly.

• Name all files without spaces.

• Only upload one submission per group. Do not upload several versions, i.e., if you need to
resubmit, use the same file name again so that the previous submission is overwritten.


