
Planning and Optimization

M. Helmert, G. Röger
P. Ferber, T. Keller, S. Sievers

University of Basel
Fall Semester 2020

Exercise Sheet B
Due: October 18, 2020

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

Exercise B.1 (8 marks)(Lecture B1)

Look up the following 5 planners in planner abstracts of the International Planning Competition
(IPC) 2014 and 2018. Categorize each of them in a similar fashion as the examples in lecture
B1. That is, list their problem class (satisficing or optimal), algorithm class (explicit search, SAT
planning or symbolic search), the design choices of their respective class (for example the search
direction for explicit search) and other aspects that stand out.

1. Mercury

2. MAPlan

3. Delfi

4. Madagascar

5. Symple

You can find planner abstracts on the competition websites reachable from the ICAPS website
(https://www.icaps-conference.org/competitions/).

Exercise B.2 (3+3+3 marks)(Lecture B3)

(a) Consider the propositional planning task Π = 〈V, I,O, γ〉 with

V = {a, b, c, d, e}
I(a) = T

I(v) = F for all v ∈ V \ {a}
O = {o1, o2, o3, o4}
γ = e

and

o1 = 〈>, b ∧ d〉
o2 = 〈¬e, a ∧ ¬b〉
o3 = 〈c, (d B e)〉
o4 = 〈a ∧ ¬b, c ∧ ¬a〉

Plot the search space explored by a progression and by a regression breadth-first search
through this task. In the regression search simplify the state formula as much as possible at
every node of the search tree. Do not expand the node further if that formula is unsatisfiable
or logically entails the state formula of a previously expanded node. In the progression search
do not expand a node if its state is a duplicate of a previously expanded state.



(b) Provide a family of planning tasks Πn such that the size of Πn is polynomial in n, and
such that a breadth-first search with regression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with progression needs to expand an exponential
number of search nodes in n. Assume the progression search prunes all duplicate states and
the regression prunes a state if its formula logically entails the formula of its parent.

(c) Provide a family of planning tasks Πn such that the size of Πn is polynomial in n, and such
that a breadth-first search with progression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with regression needs to expand an exponential
number of search nodes in n. Assume the same pruning as in exercise (b).

Exercise B.3 (1+4+1+1)(Lecture B5)

In this exercise, your task is to define a SAT-encoding for the planning task 〈{a, b, c}, {a 7→ 1, b 7→
0, c 7→ 0}, {o1, o2},¬a ∧ c〉 with o1 = 〈a, b ∧ (bB ¬a)〉 and o2 = 〈a ∧ b, c〉.

(a) Provide the clauses that encode the initial state and the goal (use time T for the latter).

(b) Provide all clauses that encode the transitions for some time step i. Simplify the clauses
and omit those that simplify to > (you don’t need to provide intermediate results for the
simplification). Annotate each remaining clause as precondition clause, positive or negative
effect clause or positive or negative frame clause.

(c) The clauses from Exercises B.3a) and B.3b) do not suffice for a complete SAT-encoding of
the planning task. Provide all missing clauses, again parametrized for some time step i.

(d) What is the smallest horizon T for which the resulting formula for the given planning task
is satisfiable? Justify your answer.

Exercise B.4 (3+5 marks)(Lecture B6)

For this exercise, you need to have minisat (minisat.se/MiniSat.html) installed. The simplest
option is to install the package pysat, which will also install several other SAT solvers. You can
install everything you need by running the following command: ./install-pysat.sh

(a) The file pyperplan/src/search/sat.py already contains a complete implementation of a
SAT search using a sequential encoding. Comment out the lines that add the positive
frame clauses to the set of clauses. Explain why this is possible without making the SAT
search compute incorrect solutions. Furthermore, investigate what effect on performance
this change has experimentally. To do so, compare the runtime of the program with and
without these clauses on the tasks in the directories blocks, gripper and logistics. You
don’t have to run the search longer than one minute.

You can run the code with the command
./pyperplan/src/pyperplan.py -s sat-seq gripper/prob01.pddl

(The domain file will be automatically inferred.)

Please note that the wallclock time printed by pyperplan can be quite off. Instead, please use
the linux built-in time command by prepending it to the above command to obtain system
wallclock time in seconds (example output: “real 0m32,177s”).

(b) The file pyperplan/src/search/sat.py contains an incomplete method build parallel model.
Please complete the implementation using the parallel encoding presented in the lecture. You
don’t have to change any of the other existing methods for this task.

Test your implementation on the same tasks as in part (a), using the command
./pyperplan/ src/pyperplan.py -s sat-par gripper/prob01.pddl.
What is the effect of the parallel encoding compared to the sequential one that you used in
part (a)? Plase explain the reason for this effect.



Exercise B.5 (5+3 marks)(Lecture B8)

Pyperplan (https://github.com/aibasel/pyperplan) is a lightweight STRIPS planner written
in Python. While it doesn’t come with as strong performance as Fast Downward, it is very easy
to extend and modify.

(a) In the file pyperplan/src/search/bdd bfs.py you can find an incomplete implementation
of a BDD-based breadth-first search. Complete it by using the utility methods in the file
pyperplan/src/search/bdd.py. Do not modify anything else than the file pyperplan/src/
search/bdd bfs.py (and do not modify the constructor of BDDSearch yet, this is for part
(b)). Test your search on the tasks in the directory blocks and make sure that it can find
valid plans.

You can run the code with the command
./pyperplan/src/pyperplan.py -s bdd blocks/domain.pddl blocks/p1.pddl

(b) The constructor of BDDSearch contains a commented out alternative variable order for the
variables within the BDD. Change the order by commenting out the old order and including
the new order instead. Print the number of total BDD nodes after adding each operator and
after each expansion step (use the provided method print bdd nodes()). Compare the two
variable orders on a small task and discuss the results.

Submission rules:

• Exercise sheets must be submitted in groups of two or three students. Please submit one
single copy of the exercises per group (only one member of the group does the submission).

• Create a single PDF file (ending .pdf) for all non-programming exercises. If you want to
submit handwritten parts, include their scans in the single PDF in a reasonable resolution,
so that they are readable but the PDF size is not astronomically large. Put the names of all
group members on top of the first page. Use page numbers or put your names on each page.
Make sure your PDF has size A4 (fits the page size if printed on A4).

• For programming exercises, only create and submit those code textfiles required by the
exercise. Put your names in a comment on top of each file. Make sure your code compiles
and test it!

• For the submission, you can either upload the single PDF or prepare a ZIP file (ending .zip,
.tar.gz or .tgz; not .rar or anything else) containing the single PDF and the code textfile(s)
and nothing else. Please do not use directories within the ZIP, i.e., zip the files directly.

• Name all files without spaces.

• Only upload one submission per group. Do not upload several versions, i.e., if you need to
resubmit, use the same file name again so that the previous submission is overwritten.


