

Planning and Optimization

M. Helmert, G. Röger
 P. Ferber, T. Keller, S. Sievers

University of Basel
 Fall Semester 2020

Classroom Exercise 3

In this classroom exercise, we denote states as sets of variables that contain exactly the variables that are true in that state. Now consider the following propositional planning task:

$$\begin{aligned}
 V &= \{A\text{-on-}B, A\text{-on-}C, A\text{-on-table}, \\
 &\quad B\text{-on-}A, B\text{-on-}C, B\text{-on-table}, \\
 &\quad C\text{-on-}A, C\text{-on-}B, C\text{-on-table}\} \\
 I &= \{A\text{-on-table}, B\text{-on-}A, C\text{-on-table}\} \\
 O &= \{\text{move-}A\text{-to-table}, \text{move-}A\text{-onto-}B, \text{move-}A\text{-onto-}C, \\
 &\quad \text{move-}B\text{-to-table}, \text{move-}B\text{-onto-}A, \text{move-}B\text{-onto-}C, \\
 &\quad \text{move-}C\text{-to-table}, \text{move-}C\text{-onto-}A, \text{move-}C\text{-onto-}B\}, \text{ where} \\
 \text{move-}A\text{-to-table} &= \langle \neg B\text{-on-}A \wedge \neg C\text{-on-}A, \neg A\text{-on-}B \wedge \neg A\text{-on-}C \wedge A\text{-on-table} \rangle, \\
 \text{move-}A\text{-onto-}B &= \langle \neg B\text{-on-}A \wedge \neg C\text{-on-}A \wedge \neg C\text{-on-}B, A\text{-on-}B \wedge \neg A\text{-on-}C \wedge \neg A\text{-on-table} \rangle, \\
 \text{move-}A\text{-onto-}C &= \langle \neg B\text{-on-}A \wedge \neg C\text{-on-}A \wedge \neg B\text{-on-}C, A\text{-on-}C \wedge \neg A\text{-on-}B \wedge \neg A\text{-on-table} \rangle, \\
 \text{move-}B\text{-to-table} &= \langle \neg A\text{-on-}B \wedge \neg C\text{-on-}B, \neg B\text{-on-}A \wedge \neg B\text{-on-}C \wedge B\text{-on-table} \rangle, \\
 \text{move-}B\text{-onto-}A &= \langle \neg A\text{-on-}B \wedge \neg C\text{-on-}B \wedge \neg C\text{-on-}A, B\text{-on-}A \wedge \neg B\text{-on-}C \wedge \neg B\text{-on-table} \rangle, \\
 \text{move-}B\text{-onto-}C &= \langle \neg A\text{-on-}B \wedge \neg C\text{-on-}B \wedge \neg A\text{-on-}C, B\text{-on-}C \wedge \neg B\text{-on-}A \wedge \neg B\text{-on-table} \rangle, \\
 \text{move-}C\text{-to-table} &= \langle \neg A\text{-on-}C \wedge \neg B\text{-on-}C, \neg C\text{-on-}A \wedge \neg C\text{-on-}B \wedge C\text{-on-table} \rangle, \\
 \text{move-}C\text{-onto-}A &= \langle \neg A\text{-on-}C \wedge \neg B\text{-on-}C \wedge \neg B\text{-on-}A, C\text{-on-}A \wedge \neg C\text{-on-}B \wedge \neg C\text{-on-table} \rangle, \\
 \text{move-}C\text{-onto-}B &= \langle \neg A\text{-on-}C \wedge \neg B\text{-on-}C \wedge \neg A\text{-on-}B, C\text{-on-}B \wedge \neg C\text{-on-}A \wedge \neg C\text{-on-table} \rangle, \text{ and} \\
 \gamma &= (A\text{-on-}C \wedge B\text{-on-table} \wedge C\text{-on-table})
 \end{aligned}$$

Let furthermore $\phi = \bigwedge_{(v=\mathbf{T}) \in I} v \wedge \bigwedge_{(v=\mathbf{F}) \in I} \neg v$ be the logical formula that describes the initial state I .

Exercise 1

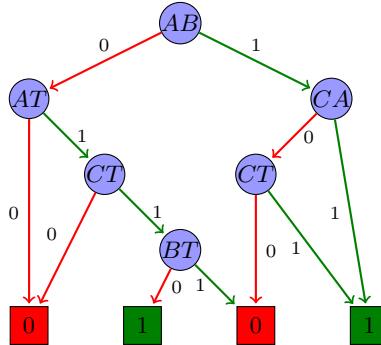
- Provide all successors of I that are created by progression search.
- Provide a set of states S that contains all states from which I can be reached by applying $\text{move-}B\text{-onto-}A$. Exploit that $\{x\text{-on-}y, x\text{-on-}z, x\text{-on-table}\}$ are mutex for $x, y, z \in \{A, B, C\}$ and pairwise distinct x, y, z in your solution.
- Let $V' = \{A\text{-on-}B, A\text{-on-}C, A\text{-on-table}, C\text{-on-}A, C\text{-on-}B, C\text{-on-table}\}$ and $e = \text{eff}(\text{move-}B\text{-onto-}A)$. Compute $\text{regr}(v, e)$ for all $v \in V'$.
- Let $V'' = \{B\text{-on-}C, B\text{-on-table}\}$ and $e = \text{eff}(\text{move-}B\text{-onto-}A)$. Compute $\text{regr}(v, e)$ for all $v \in V''$.
- Let $e = \text{eff}(\text{move-}B\text{-onto-}A)$. Compute $\text{regr}(B\text{-on-}A, e)$.
- Let $e = \text{eff}(\text{move-}B\text{-onto-}A)$. Compute $\text{regr}(\phi, e)$.
- Compute $\text{regr}(\phi, \text{move-}B\text{-onto-}A)$.
- Compare your solutions of Exercises 1.b and 1.g.

Exercise 2

- (a) In SAT Planning, we convert the planning task II with a horizon T into a logical formula ϕ . Then, we try to find a variable assignment that satisfies ϕ . If there is no such assignment, we increase the horizon and repeat the procedure. Provide an intuitive explanation for the horizon T .
- (b) Provide the clauses for the initial state.
- (c) Provide the clauses for the goal formula.
- (d) For every time step $i \in \{1..T\}$, we have an *operator selection clause* $o_1^i \vee \dots \vee o_n^i$. Explain the purpose of the operator selection clauses. How do the clauses achieve their purpose? (Hint: The SAT solver receives as input a formula in CNF. Every model of the CNF formula must also be a model of every individual clause.)
- (e) For every time step $i \in \{1..T\}$, we have a set of *operator exclusion clauses* $\{\neg o_j^i \vee \neg o_k^i \mid 1 \leq j < k \leq |O|\}$. Explain the purpose of the operator exclusion clauses. How do the clauses achieve their purpose?
- (f) Provide the precondition clauses for the action *move-A-to-table* at time step i .
- (g) Provide the positive effect clause for the action *move-A-to-table* and the variable *A-on-table* at time step i .
- (h) Provide the positive effect clause for the action *move-A-to-table* and the variable *A-on-C* at time step i .
- (i) Provide the negative effect clause for the action *move-A-to-table* and the variable *A-on-B* at time step i .
- (j) Provide the positive frame clause for the action *move-A-to-table* and the variable *B-on-table* at time step i .
- (k) Provide the negative frame clause for the action *move-A-to-table* and the variable *B-on-table* at time step i .

Exercise 3

- (a) Provide a logical formula that describes the set of states that is encoded by the following BDD (each variable name $x\text{-}on\text{-}y \in V$ is abbreviated as xy). Give two states that are reachable from I that are in that set.



- (b) Provide the BDD that encodes the set of states that is described by the logical formula $A\text{-on-table} \wedge ((C\text{-on-}B \wedge B\text{-on-}A) \vee C\text{-on-table})$.
- (c) Compare your solutions of Exercises 3.b and 1.a. How do they relate to planning as symbolic search?