
Planning and Optimization

M. Helmert, G. Röger
P. Ferber, T. Keller, S. Sievers

University of Basel
Fall Semester 2020

Classroom Exercise 2

The files required for this exercise are in the directory classroom-exercise-2 of the course
repository (/vagrant/planopt-hs20 in your course VM). Update your clone of the repository
with git pull -u to see the files. For the runs with Fast Downward, set a time limit of 1 minute
and a memory limit of 2 GB. Using Linux, such limits can be set with ulimit -t 60 and ulimit

-v 2000000, respectively.

Exercise 1

The goal of this exercise is to implement the A∗ search algorithm in the Fast Downward planner.
We have prepared a stub of the class AStarSearch in the files

classroom-exercise-2/fast-downward/src/search/search engines/astar search.{cc,h}.

Implement the parts marked as missing with a comment “// insert your code here”:

• Add a comparison operator for two objects of type AStarSearchNode. You can find the stub
in astar search.h in the function

bool operator()(const AStarSearchNode *lhs, const AStarSearchNode *rhs) const

of the struct Compare within the AStarSearchNode class. Implement the comparison such
that it returns true if the f-value of lhs is larger than the f-value of rhs, or if both f-values
are equal and the h-value of lhs is larger than the h-value of rhs.

• The class OpenList internally works with the priority queue std::priority queue from the
C++ standard library. Based on the corresponding functions in std::priority queue, im-
plement the two functions to insert and remove AStarSearchNodes into and from OpenList

in astar search.h.

• In astar search.cc, the implementation of the A∗ search algorithm in the search method
of AStarSearch is missing. Implement A∗ based on the pseudo code that is presented in
chapter 15, slides 18 of the lecture Foundations of Artificial Intelligence.1

Your implementation of A∗ based on the provided code stub uses a fixed admissible heuristic
(the LM-Cut heuristic). Test the correctness of your implementation (called with --search

"planopt astar()") by comparing to the Fast Downward version of A∗ and LM-Cut (called with
--search "astar(lmcut())") on all instances in the directory classroom-exercise-2/benchmarks.
Discuss the search time and the plan costs.

1https://ai.dmi.unibas.ch/_files/teaching/fs18/ai/slides/ai15-handout4.pdf


