
Discrete Mathematics in Computer Science
Inference Rules and Calculi

Malte Helmert, Gabriele Röger

University of Basel

Inference: Motivation

up to now: proof of logical consequence
with semantic arguments

no general algorithm

solution: produce formulas that are logical consequences
of given formulas with syntactic inference rules

advantage: mechanical method that can easily
be implemented as an algorithm

Inference Rules

Inference rules have the form

ϕ1, . . . , ϕk

ψ
.

Meaning: “Every model of ϕ1, . . . , ϕk is a model of ψ.”

An axiom is an inference rule with k = 0.

A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens
ϕ, (ϕ→ ψ)

ψ

Modus tollens
¬ψ, (ϕ→ ψ)

¬ϕ

∧-elimination
(ϕ ∧ ψ)

ϕ

(ϕ ∧ ψ)

ψ

∧-introduction
ϕ, ψ

(ϕ ∧ ψ)

∨-introduction
ϕ

(ϕ ∨ ψ)

↔-elimination
(ϕ↔ ψ)

(ϕ→ ψ)

(ϕ↔ ψ)

(ψ → ϕ)

Derivation

Definition (Derivation)

A derivation or proof of a formula ϕ from a knowledge base KB
is a sequence of formulas ψ1, . . . , ψk with

ψk = ϕ and

for all i ∈ {1, . . . , k}:
ψi ∈ KB, or
ψi is the result of the application of an inference rule
to elements from {ψ1, . . . , ψi−1}.

German: Ableitung, Beweis

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Derivation: Example

Example

Given: KB = {P, (P → Q), (P → R), ((Q ∧ R)→ S)}
Task: Find derivation of (S ∧ R) from KB.

1 P (KB)

2 (P → Q) (KB)

3 Q (1, 2, Modus ponens)

4 (P → R) (KB)

5 R (1, 4, Modus ponens)

6 (Q ∧ R) (3, 5, ∧-introduction)

7 ((Q ∧ R)→ S) (KB)

8 S (6, 7, Modus ponens)

9 (S ∧ R) (8, 5, ∧-introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write KB `C ϕ if there is a derivation of ϕ from KB
in calculus C .
(If calculus C is clear from context, also only KB ` ϕ.)

A calculus C is correct if for all KB and ϕ
KB `C ϕ implies KB |= ϕ.

A calculus C is complete if for all KB and ϕ
KB |= ϕ implies KB `C ϕ.

Consider calculus C , consisting of the derivation rules seen earlier.
Question: Is C correct?
Question: Is C complete?

German: korrekt, vollständig

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write KB `C ϕ if there is a derivation of ϕ from KB
in calculus C .
(If calculus C is clear from context, also only KB ` ϕ.)

A calculus C is correct if for all KB and ϕ
KB `C ϕ implies KB |= ϕ.

A calculus C is complete if for all KB and ϕ
KB |= ϕ implies KB `C ϕ.

Consider calculus C , consisting of the derivation rules seen earlier.
Question: Is C correct?
Question: Is C complete?

German: korrekt, vollständig

Refutation-completeness

We obviously want correct calculi.

Do we always need a complete calculus?

Contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ
This implies that KB |= ϕ iff KB ∪ {¬ϕ} is unsatisfiable.

We can reduce the general implication problem
to a test of unsatisfiability.

In calculi, we use the special symbol � for (provably)
unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if KB `C �
for all unsatisfiable KB.

German: widerlegungsvollständig

Refutation-completeness

We obviously want correct calculi.

Do we always need a complete calculus?

Contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ
This implies that KB |= ϕ iff KB ∪ {¬ϕ} is unsatisfiable.

We can reduce the general implication problem
to a test of unsatisfiability.

In calculi, we use the special symbol � for (provably)
unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if KB `C �
for all unsatisfiable KB.

German: widerlegungsvollständig

Refutation-completeness

We obviously want correct calculi.

Do we always need a complete calculus?

Contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ
This implies that KB |= ϕ iff KB ∪ {¬ϕ} is unsatisfiable.

We can reduce the general implication problem
to a test of unsatisfiability.

In calculi, we use the special symbol � for (provably)
unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if KB `C �
for all unsatisfiable KB.

German: widerlegungsvollständig

Refutation-completeness

We obviously want correct calculi.

Do we always need a complete calculus?

Contradiction theorem:
KB ∪ {ϕ} is unsatisfiable iff KB |= ¬ϕ
This implies that KB |= ϕ iff KB ∪ {¬ϕ} is unsatisfiable.

We can reduce the general implication problem
to a test of unsatisfiability.

In calculi, we use the special symbol � for (provably)
unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if KB `C �
for all unsatisfiable KB.

German: widerlegungsvollständig

Discrete Mathematics in Computer Science
Resolution Calculus

Malte Helmert, Gabriele Röger

University of Basel

Resolution: Idea

Resolution is a refutation-complete calculus
for knowledge bases in conjunctive normal form.

Every knowledge base can be transformed
into equivalent formulas in CNF.

Transformation can require exponential time.
Alternative: efficient transformation into equisatisfiable
formulas (not part of this course)

Show KB |= ϕ by deriving KB ∪ {¬ϕ} `R �
with resolution calculus R.

Resolution can require exponential time.

This is probably the case for all refutation-complete proof
methods. complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Resolution: Idea

Resolution is a refutation-complete calculus
for knowledge bases in conjunctive normal form.

Every knowledge base can be transformed
into equivalent formulas in CNF.

Transformation can require exponential time.
Alternative: efficient transformation into equisatisfiable
formulas (not part of this course)

Show KB |= ϕ by deriving KB ∪ {¬ϕ} `R �
with resolution calculus R.

Resolution can require exponential time.

This is probably the case for all refutation-complete proof
methods. complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Resolution: Idea

Resolution is a refutation-complete calculus
for knowledge bases in conjunctive normal form.

Every knowledge base can be transformed
into equivalent formulas in CNF.

Transformation can require exponential time.
Alternative: efficient transformation into equisatisfiable
formulas (not part of this course)

Show KB |= ϕ by deriving KB ∪ {¬ϕ} `R �
with resolution calculus R.

Resolution can require exponential time.

This is probably the case for all refutation-complete proof
methods. complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Resolution: Idea

Resolution is a refutation-complete calculus
for knowledge bases in conjunctive normal form.

Every knowledge base can be transformed
into equivalent formulas in CNF.

Transformation can require exponential time.
Alternative: efficient transformation into equisatisfiable
formulas (not part of this course)

Show KB |= ϕ by deriving KB ∪ {¬ϕ} `R �
with resolution calculus R.

Resolution can require exponential time.

This is probably the case for all refutation-complete proof
methods. complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

Formula in CNF as set of clauses
(due to commutativity, idempotence, associativity of ∧)

Set of formulas as set of clauses

Clause as set of literals
(due to commutativity, idempotence, associativity of ∨)

Knowledge base as set of sets of literals

Example

KB = {(P ∨ P), ((¬P ∨ Q) ∧ (¬P ∨ R) ∧ (Q ∨ ¬P) ∧ R),

KB = {

((¬Q ∨ ¬R ∨ S) ∧ P)}

as set of clauses:

∆ = {{P}, {¬P,Q}, {¬P,R}, {R}, {¬Q,¬R,S}}

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

Formula in CNF as set of clauses
(due to commutativity, idempotence, associativity of ∧)

Set of formulas as set of clauses

Clause as set of literals
(due to commutativity, idempotence, associativity of ∨)

Knowledge base as set of sets of literals

Example

KB = {(P ∨ P), ((¬P ∨ Q) ∧ (¬P ∨ R) ∧ (Q ∨ ¬P) ∧ R),

KB = {

((¬Q ∨ ¬R ∨ S) ∧ P)}

as set of clauses:

∆ = {{P}, {¬P,Q}, {¬P,R}, {R}, {¬Q,¬R,S}}

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

Formula in CNF as set of clauses
(due to commutativity, idempotence, associativity of ∧)

Set of formulas as set of clauses

Clause as set of literals
(due to commutativity, idempotence, associativity of ∨)

Knowledge base as set of sets of literals

Example

KB = {(P ∨ P), ((¬P ∨ Q) ∧ (¬P ∨ R) ∧ (Q ∨ ¬P) ∧ R),

KB = {

((¬Q ∨ ¬R ∨ S) ∧ P)}

as set of clauses:
∆ = {{P}, {¬P,Q}, {¬P,R}, {R}, {¬Q,¬R,S}}

Resolution Rule

The resolution calculus consists of a single rule,
called resolution rule:

C1 ∪ {X}, C2 ∪ {¬X}
C1 ∪ C2

,

where C1 and C2 are (possibly empty) clauses and
X is an atomic proposition.

If we derive the empty clause, we write � instead of {}.

Terminology:

X and ¬X are the resolution literals,

C1 ∪ {X} and C2 ∪ {¬X} are the parent clauses, and

C1 ∪ C2 is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale,

German:

Elternklauseln, Resolvent

Resolution Rule

The resolution calculus consists of a single rule,
called resolution rule:

C1 ∪ {X}, C2 ∪ {¬X}
C1 ∪ C2

,

where C1 and C2 are (possibly empty) clauses and
X is an atomic proposition.

If we derive the empty clause, we write � instead of {}.

Terminology:

X and ¬X are the resolution literals,

C1 ∪ {X} and C2 ∪ {¬X} are the parent clauses, and

C1 ∪ C2 is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale,

German:

Elternklauseln, Resolvent

Resolution Rule

The resolution calculus consists of a single rule,
called resolution rule:

C1 ∪ {X}, C2 ∪ {¬X}
C1 ∪ C2

,

where C1 and C2 are (possibly empty) clauses and
X is an atomic proposition.

If we derive the empty clause, we write � instead of {}.

Terminology:

X and ¬X are the resolution literals,

C1 ∪ {X} and C2 ∪ {¬X} are the parent clauses, and

C1 ∪ C2 is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale,

German:

Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base ∆
is a sequence of clauses C1, . . . ,Cn with

Cn = D and

for all i ∈ {1, . . . , n}:
Ci ∈ ∆, or
Ci is resolvent of two clauses from {C1, . . . ,Ci−1}.

If there is a proof of D by resolution from ∆, we say that
D can be derived with resolution from ∆ and write ∆ `R D.

Remark: Resolution is a correct, refutation-complete,

Remark:

but incomplete calculus.

German: Resolutionsbeweis, mit Resolution aus ∆ abgeleitet

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: KB = {P, (P → (Q ∧ R))}.
Show with resolution that KB |= (R ∨ S).

Three steps:

1 Reduce logical consequence to unsatisfiability.

2 Transform knowledge base into clause form (CNF).

3 Derive empty clause � with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

KB |= (R ∨ S) iff KB ∪ {¬(R ∨ S)} is unsatisfiable.

Thus, consider
KB′ = KB ∪ {¬(R ∨ S)} = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

. . .

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: KB = {P, (P → (Q ∧ R))}.
Show with resolution that KB |= (R ∨ S).

Three steps:

1 Reduce logical consequence to unsatisfiability.

2 Transform knowledge base into clause form (CNF).

3 Derive empty clause � with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

KB |= (R ∨ S) iff KB ∪ {¬(R ∨ S)} is unsatisfiable.

Thus, consider
KB′ = KB ∪ {¬(R ∨ S)} = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

. . .

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: KB = {P, (P → (Q ∧ R))}.
Show with resolution that KB |= (R ∨ S).

Three steps:

1 Reduce logical consequence to unsatisfiability.

2 Transform knowledge base into clause form (CNF).

3 Derive empty clause � with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

KB |= (R ∨ S) iff KB ∪ {¬(R ∨ S)} is unsatisfiable.

Thus, consider
KB′ = KB ∪ {¬(R ∨ S)} = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

. . .

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: KB = {P, (P → (Q ∧ R))}.
Show with resolution that KB |= (R ∨ S).

Three steps:

1 Reduce logical consequence to unsatisfiability.

2 Transform knowledge base into clause form (CNF).

3 Derive empty clause � with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

KB |= (R ∨ S) iff KB ∪ {¬(R ∨ S)} is unsatisfiable.

Thus, consider
KB′ = KB ∪ {¬(R ∨ S)} = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

KB′ = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

Step 2: Transform knowledge base into clause form (CNF).

P
 Clauses:{P}
P → (Q ∧ R)) ≡ (¬P ∨ (Q ∧ R)) ≡ ((¬P ∨ Q) ∧ (¬P ∨ R))
 Clauses:{¬P,Q}, {¬P,R}
¬(R ∨ S) ≡ (¬R ∧ ¬S)
 Clauses:{¬R}, {¬S}

∆ = {{P}, {¬P,Q}, {¬P,R}, {¬R}, {¬S}}

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

KB′ = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

Step 2: Transform knowledge base into clause form (CNF).

P
 Clauses:{P}
P → (Q ∧ R)) ≡ (¬P ∨ (Q ∧ R)) ≡ ((¬P ∨ Q) ∧ (¬P ∨ R))
 Clauses:{¬P,Q}, {¬P,R}
¬(R ∨ S) ≡ (¬R ∧ ¬S)
 Clauses:{¬R}, {¬S}

∆ = {{P}, {¬P,Q}, {¬P,R}, {¬R}, {¬S}}

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

KB′ = {P, (P → (Q ∧ R)),¬(R ∨ S)}.

Step 2: Transform knowledge base into clause form (CNF).

P
 Clauses:{P}
P → (Q ∧ R)) ≡ (¬P ∨ (Q ∧ R)) ≡ ((¬P ∨ Q) ∧ (¬P ∨ R))
 Clauses:{¬P,Q}, {¬P,R}
¬(R ∨ S) ≡ (¬R ∧ ¬S)
 Clauses:{¬R}, {¬S}

∆ = {{P}, {¬P,Q}, {¬P,R}, {¬R}, {¬S}}

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

∆ = {{P}, {¬P,Q}, {¬P,R}, {¬R}, {¬S}}

Step 3: Derive empty clause � with resolution.

C1 = {P} (from ∆)

C2 = {¬P,Q} (from ∆)

C3 = {¬P,R} (from ∆)

C4 = {¬R} (from ∆)

C5 = {Q} (from C1 and C2)

C6 = {¬P} (from C3 and C4)

C7 = � (from C1 and C6)

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution

Show with resolution, that KB |= DrinkBeer, where

KB = {(¬DrinkBeer→ EatFish),

((EatFish ∧ DrinkBeer)→ ¬EatIceCream),

((EatIceCream ∨ ¬DrinkBeer)→ ¬EatFish)}.

Proving that Something Does Not Follow

We can now use resolution proofs to mechanically show
KB |= ϕ whenever a given knowledge base logically implies ϕ.

Question: How can we use the same mechanism to show
that something does not follow (KB 6|= ϕ)?

	Inference Rules and Calculi
	

	Resolution Calculus
	

