Discrete Mathematics in Computer Science

E2. Properties of Formulas and Equivalences

Malte Helmert, Gabriele Röger

University of Basel

November 25, 2020

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

1 / 21

Discrete Mathematics in Computer Science

November 25, 2020 — E2. Properties of Formulas and Equivalences

E2.1 Properties of Propositional Formulas

E2.2 Equivalences

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

E2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

E2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

The Story So Far

- propositional logic based on atomic propositions
- ▶ syntax: which formulas are well-formed?
- semantics: when is a formula true?
- ▶ interpretations: important basis of semantics

E2.1 Properties of Propositional

Formulas

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

3 / 2

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

4 / 2

Reminder: Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:

- ightharpoonup Every atom $a \in A$ is a propositional formula over A.
- If φ is a propositional formula over A, then so is its negation $\neg \varphi$.
- ▶ If φ and ψ are propositional formulas over A, then so is the conjunction $(\varphi \wedge \psi)$.
- ▶ If φ and ψ are propositional formulas over A, then so is the disjunction $(\varphi \lor \psi)$.

The implication $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$. The biconditional $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \to \psi) \land (\psi \to \varphi))$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

5 / 21

Definition (Semantics of Propositional Logic)

Reminder: Semantics of Propositional Logic

A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I}: A \to \{0,1\}$.

A propositional formula φ (over A) holds under \mathcal{I} (written as $\mathcal{I} \models \varphi$) according to the following definition:

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

E2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Properties of Propositional Formulas

A propositional formula φ is

- ightharpoonup satisfiable if φ has at least one model
- ightharpoonup unsatisfiable if φ is not satisfiable
- ightharpoonup valid (or a tautology) if φ is true under every interpretation
- ightharpoonup falsifiable if φ is no tautology

German: erfüllbar, unerfüllbar, allgemeingültig/eine Tautologie, falsifizierbar

E2. Properties of Formulas and Equivalences

E2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Examples

How can we show that a formula has one of these properties?

- ▶ Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)
- Show that $(A \land B)$ is falsifiable. $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \not\models (A \land B)$)
- Show that (A ∧ B) is not valid.
 Follows directly from falsifiability.
- ▶ Show that $(A \land B)$ is not unsatisfiable. Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/ not satisfiable/not falsifiable?

→ must consider all possible interpretations

Properties of Propositional Formulas

Truth Tables

Evaluate for all possible interpretations if they are models of the considered formula.

$$\begin{array}{c|c}
\mathcal{I}(\mathsf{A}) & \mathcal{I} \models \neg \mathsf{A} \\
\hline
0 & \mathsf{Yes} \\
1 & \mathsf{No}
\end{array}$$

$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \land B)$	$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \lor B)$
0	0	No	0	0	No
0	1	No	0	1	Yes
1	0	No	1	0	Yes
1	1	Yes	1	1	Yes

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

9 / 21

Truth Tables in General

E2. Properties of Formulas and Equivalences

Similarly in the case where we consider a formula whose building blocks are themselves arbitrary unspecified formulas:

$$\begin{array}{c|cccc} \mathcal{I} \models \varphi & \mathcal{I} \models \psi & \mathcal{I} \models (\varphi \land \psi) \\ \hline \text{No} & \text{No} & \text{No} \\ \text{No} & \text{Yes} & \text{No} \\ \text{Yes} & \text{No} & \text{No} \\ \text{Yes} & \text{Yes} & \text{Yes} \\ \end{array}$$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

E2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Truth Tables for Properties of Formulas

Is $\varphi = ((A \to B) \lor (\neg B \to A))$ valid, unsatisfiable, ...?

E2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Connection Between Formula Properties and Truth Tables

A propositional formula φ is

- ▶ satisfiable if φ has at least one model \rightsquigarrow result in at least one row is "Yes"
- unsatisfiable if φ is not satisfiable \rightsquigarrow result in all rows is "No"
- ▶ valid (or a tautology) if φ is true under every interpretation \rightsquigarrow result in all rows is "Yes"
- ► falsifiable if φ is no tautology \rightsquigarrow result in at least one row is "No"

How big is a truth table with n atomic propositions?

- 2 interpretations (rows)
- 4 interpretations (rows)
- 8 interpretations (rows)
- ??? interpretations

Some examples: $2^{10} = 1024$, $2^{20} = 1048576$, $2^{30} = 1073741824$

→ not viable for larger formulas; we need a different solution

- more on difficulty of satisfiability etc.: Theory of Computer Science course
- practical algorithms: Foundations of Al course

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

E2. Properties of Formulas and Equivalences

Equivalences

E2.2 Equivalences

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

E2. Properties of Formulas and Equivalences

Equivalences

Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas φ and ψ over A are (logically) equivalent $(\varphi \equiv \psi)$ if for all interpretations \mathcal{I} for Ait is true that $\mathcal{I} \models \varphi$ if and only if $\mathcal{I} \models \psi$.

German: logisch äquivalent

E2. Properties of Formulas and Equivalences

Equivalent Formulas: Example

$$((\varphi \lor \psi) \lor \chi) \equiv (\varphi \lor (\psi \lor \chi))$$

$\mathcal{I} \models$	$\mathcal{I}\models$					
φ	ψ	χ	$(\varphi \lor \psi)$	$(\psi \lor \chi)$	$((\varphi \lor \psi) \lor \chi)$	$(\varphi \lor (\psi \lor \chi))$
No	No	No	No	No	No	No
No	No	Yes	No	Yes	Yes	Yes
No	Yes	No	Yes	Yes	Yes	Yes
No	Yes	Yes	Yes	Yes	Yes	Yes
Yes	No	No	Yes	No	Yes	Yes
Yes	No	Yes	Yes	Yes	Yes	Yes
Yes	Yes	No	Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes	Yes	Yes	Yes

Equivalences

Some Equivalences (1)

$$\begin{split} (\varphi \wedge \varphi) &\equiv \varphi \\ (\varphi \vee \varphi) &\equiv \varphi \\ (\varphi \wedge \psi) &\equiv (\psi \wedge \varphi) \\ (\varphi \vee \psi) &\equiv (\psi \vee \varphi) \\ ((\varphi \wedge \psi) \wedge \chi) &\equiv (\varphi \wedge (\psi \wedge \chi)) \\ ((\varphi \vee \psi) \vee \chi) &\equiv (\varphi \vee (\psi \vee \chi)) \quad \text{(associativity)} \end{split}$$

German: Idempotenz, Kommutativität, Assoziativität

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

17 / 21

E2. Properties of Formulas and Equivalences

Equivalences

Some Equivalences (2)

$$\begin{split} (\varphi \wedge (\varphi \vee \psi)) &\equiv \varphi \\ (\varphi \vee (\varphi \wedge \psi)) &\equiv \varphi \\ (\varphi \wedge (\psi \vee \chi)) &\equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)) \\ (\varphi \vee (\psi \wedge \chi)) &\equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)) \quad \text{(distributivity)} \end{split}$$

German: Absorption, Distributivität

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020

-- / --

E2. Properties of Formulas and Equivalences

Equivalences

Some Equivalences (3)

$$\neg\neg\varphi\equiv\varphi \qquad \qquad \text{(Double negation)}$$

$$\neg(\varphi \wedge \psi) \equiv (\neg \varphi \vee \neg \psi)$$

$$\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi) \tag{C}$$

(De Morgan's rules)

$$(\varphi \lor \psi) \equiv \varphi$$
 if φ tautology

$$(\varphi \wedge \psi) \equiv \psi$$
 if φ tautology

(tautology rules)

$$(\varphi \lor \psi) \equiv \psi$$
 if φ unsatisfiable

$$(\varphi \wedge \psi) \equiv \varphi$$
 if φ unsatisfiable (unsatisfiability rules)

German: Doppelnegation, De Morgansche Regeln,

Tautologieregeln, Unerfüllbarkeitsregeln

E2. Properties of Formulas and Equivalences

Equivalences

Substitution Theorem

Theorem (Substitution Theorem)

Let φ and φ' be equivalent propositional formulas over A.

Let ψ be a propositional formula with (at least) one occurrence of the subformula φ .

Then ψ is equivalent to ψ' , where ψ' is constructed from ψ by replacing an occurrence of φ in ψ with φ' .

German: Ersetzbarkeitstheorem

(without proof)

E2. Properties of Formulas and Equivalences

Equivalences

Application of Equivalences: Example

$$\begin{split} (\mathsf{P} \wedge (\mathsf{Q} \vee \neg \mathsf{P})) &\equiv ((\mathsf{P} \wedge \mathsf{Q}) \vee (\mathsf{P} \wedge \neg \mathsf{P})) & \text{ (distributivity)} \\ &\equiv ((\mathsf{P} \wedge \neg \mathsf{P}) \vee (\mathsf{P} \wedge \mathsf{Q})) & \text{ (commutativity)} \\ &\equiv (\mathsf{P} \wedge \mathsf{Q}) & \text{ (unsatisfiability rule)} \end{split}$$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

November 25, 2020 21 / 21