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C3. Acyclicity Acyclic (Di-) Graphs C3. Acyclicity Acyclic (Di-) Graphs
Acyclic

Similarly to connectedness, the presence or absence of cycles
) ; is an important practical property for (di-) graphs.
C3.1 Acyclic (Di-) Graphs |
Definition (acyclic, forest, DAG)
A graph or digraph G is called acyclic if there exists no cycle in G.

An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG
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C3. Acyclicity Acyclic (Di-) Graphs

Acyclic (Di-) Graphs — Example

¥
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C3. Acyclicity Acyclic (Di-) Graphs

Trees

Definition (tree)
A connected forest is called a tree.

German: Baum

> Tree is also a word for a recursive data structure,
which consists of either a leaf or a parent node
with one or more children, which are themselves trees.

» This other kind of tree is also called a rooted tree
to distinguish it from a tree as a graph.

» The two meanings of “tree” are distinct but closely related.
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C3. Acyclicity Acyclic (Di-) Graphs

Tree Graphs vs. Rooted Trees — Example (1)

A

tree graph rooted tree with root A
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C3. Acyclicity Acyclic (Di-) Graphs

Tree Graphs vs. Rooted Trees — Example (2)
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tree graph rooted tree with root C
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C3. Acyclicity

Acyclic (Di-) Graphs C3. Acyclicity

From Tree Graphs to Rooted Trees

Acyclic (Di-) Graphs

Tree Graphs vs. Rooted Trees — Example (3)

General procedure for converting tree graphs into rooted trees:
> Select any vertex v. Make v the root of the tree.

> Initially, v is the only pending vertex,
Q and there are no processed vertices.
G Q P As long as there are pending vertices:
G e > Select any pending vertex u.
G » Make all neighbours v of u that are not yet processed

e G e e G children of v and mark them as pending.

» Change u from pending to processed.

tree graph rooted tree with root F We do not prove that this procedure always works. A proof of
correctness can be given based on the results we show next.
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C3. Acyclicity Unique Paths in Trees C3. Acyclicity

Unique Paths in Trees

Unique Paths in Trees

C3.2 Unique Paths in Trees

Theorem

Let G = (V,E) be a graph.

Then G is a tree iff there exists exactly one path
from any vertex u € V to any vertex v € V.
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C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees — Proof (1)

Proof.
(=) Gisatree. Letu,veV.
We must show that there exists exactly one path from u to v.

We know that at least one path exists because G is connected.

It remains to show that there cannot be two paths from u to v.
If u = v, there is only one path (the empty one).
(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from u to v
(u # v) and derive a contradiction.
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C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees — Proof (2)

Proof (continued).

Let 7 = (vo, v1,...,Vp) and @’ = (V{, v{, ..., v},) be the two paths
(with vo = v) = u and v, = v}, = v).

Let i be the smallest index with v; # v,f, which must exist because
the two paths are different, and neither can be a prefix of the other
(else v would be repeated in the longer path).

We have i > 1 because vy = V).

Let j > i be the smallest index such that v; = v, for some k > i.
Such an index must exist because v, = v},,.

Then (vi—1,...,Vj—1,V,,...,V/_4) is a cycle,

which contradicts the requirement that G is a tree.
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C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees — Proof (3)

Proof (continued).
(«<=): Forall u,v € V, there exists exactly one path from u to v.
We must show that G is a tree, i.e., is connected and acyclic.

Because there exist paths from all u to all v, G is connected.

Proof by contradiction: assume that there exists a cycle in G,

= (u,v,...,Vp,u) with n > 2.

(Note that all cycles have length at least 3.)

From the definition of cycles, we have v; # v,,.

Then (u,v1) and (u, vy, ..., v1) are two different paths

from u to vy, contradicting that there exists exactly one path

from every vertex to every vertex. Hence G must be acyclic. O
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

C3.3 Leaves and Edge Counts in
Trees and Forests
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests C3. Acyclicity Leaves and Edge Counts in Trees and Forests
Leaves in Trees Leaves in Trees — Proof
Proof.
Let 7 = (w, ..., v,) be path in G with maximal length
pefinition Becaus a”\fat;szm G-h > 1 (else G would not b d
Let G = (V, E) be a tree. ecause |V| > 2, we have n > 1 (else G would not be connected).
A leaf of G is a vertex v € V with deg(v) = 1. We show that vertex v, has degree 1: v,_; is a neighbour in G.
Assume that it were not the only neighbour of v, in G,
Theorem so u is another neighbour of v,. Then:
Let G = (V,E) be a tree with |V| > 2. » If uis not on the path, then (v, ..., vy, u)
Then G has at least two leaves. is a longer path: contradiction.
» If uis on the path, then u = v; for some i # nand i # n— 1.
Then (vj,...,vpn, V) is a cycle: contradiction.
By reversing m we can show deg(vp) = 1 in the same way. Ol
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests C3. Acyclicity Leaves and Edge Counts in Trees and Forests
Edges in Trees Edges in Trees — Proof (1)
Proof.
Proof by induction over n = |V/|.
Induction base (n = 1):
Theorem _ Then G has 1 vertex and 0 edges.
Let G = (V,E) be a tree with V # (). Weget [E|=0=1—1=|V| 1.
Then |E| = |V| — 1. _
Induction step (n — n+ 1):
Let G = (V, E) be a tree with n+ 1 vertices (n > 1).
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let e = {u, v} be the connecting edge.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees — Proof (2)

Proof (continued).
Consider the graph G’ = (V' E’)
with V/ =V \ {u} and E' = E \ {e}.

» G’ is acyclic: every cycle in G’ would also be present in G
(contradiction).

» G’ is connected: for all vertices w # u and w' # u,
G has a path 7 from w to w' because G is connected.
Path 7 cannot include u because u has only one neighbour, so
traversing u requires repeating v. Hence 7 is also a path in G'.

Hence G’ is a tree with n vertices, and we can apply

the induction hypothesis, which gives |[E'| = |V'| — 1.

It follows that
E|l=|E'|+1=(VI-1)+1=(VI+1)-1=|V|-1 O
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Edges in Forests

Theorem
Let G = (V,E) be a forest.

Then |E| = |V| — |C|.

This result generalizes the previous one.
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Let C be the set of connected components of G.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Forests — Proof

Proof.
Let C = {Cl,...,Ck}.
For 1 <i <k, let G; = (C;, E;) be G restricted to C;, i.e.,
the graph whose vertices are C;
and whose edges are the edges e € E with e C ;.
We have |V| = 32K | |Ci| because the connected components
form a partition of V.
We have |E| = 3% | |E;| because every edge belongs to exactly
one connected component. (Note that there cannot be edges
between different connected components.)
Every graph G; is a tree with at least one vertex:
it is connected because its vertices form a connected component,
and it is acyclic because G is. This implies |E;| = |C;| — 1.
Putting this together, we get

k k k
|E| = Zi:l |Ei| = Zi:1(|Ci|_1) = Zi:l |Gl—k=|V|-|C|. O
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C3. Acyclicity Characterizations of Trees

Characterizations of Trees

Theorem
Let G = (V,E) be a graph with V = ().
The following statements are equivalent:

Q G is a tree.

@ G is acyclic and connected.

@ G is acyclic and |E| = |V|—1.

© G is connected and |E| = |V| — 1.

© For all u,v € V there exists exactly one path from u to v.
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C3. Acyclicity

Characterizations of Trees — Proof (1)

Reminder:

1) G is a tree.

2) G is acyclic and connected.

3) G is acyclic and |E| = |V| — 1.

4) G is connected and |E| = |V]| — 1.

5) For all u, v € V there exists exactly one path from v to v.

(
(
(
(
(

Proof.
We know already:

» (1) and (2) are equivalent by definition of trees.
» We have shown that (1) and (5) are equivalent.
» We have shown that (1) implies (3) and (4).
We complete the proof by showing (3) = (2) and (4) = (2).
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26 / 28

C3. Acyclicity Characterizations of Trees

Characterizations of Trees — Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) Gis acyclic and |E| = |V| —1.

Proof (continued).

(3) = (2):
Because G is acyclic, it is a forest.
From the previous result, we have |E| = |V| — |C|,

where C are the connected components of G.
But we also know |E| = |V| — 1. This implies |C| = 1.
Hence G is connected and therefore a tree.
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Characterizations of Trees — Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E| = |V|—1.

Proof (continued).

(4) = (2):

In graphs that are not acyclic, we can remove an edge without
changing the connected components: if (vp,..., Vs, vo) (n > 2)
is a cycle, remove the edge {wy, v1} from the graph.

Every walk using this edge can substitute (v1,..., vy, vo)

(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V, E’) is acyclic and connected and therefore a tree.

This implies |E’| = |V| — 1, but we also have |E| = |V| — 1.

This yields |E| = |E’| and hence E' = E: the number of edges
removable in this way must be 0. Hence G is already acyclic. [
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