Discrete Mathematics in Computer Science B10. A Glimpse of Abstract Algebra

Malte Helmert, Gabriele Röger

University of Basel

October 26, 2020

Discrete Mathematics in Computer Science October 26, 2020 — B10. A Glimpse of Abstract Algebra

B10.1 Abstract Groups

B10.2 Symmetric Group and Permutation Groups

B10.1 Abstract Groups

Abstract Algebra

Elementary algebra: "Arithmetics with variables"

- e.g. $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ describes the solutions of $ax^2 + bx + c = 0$ where $a \neq 0$.
- Variables for numbers and operations such as addition, subtraction, multiplication, division ...
- "What you learn at school."

Abstract algebra: Generalization of elementary algebra

- Arbitrary sets and operations on their elements
- e.g. permutations of a given set S plus function composition
- Abstract algebra studies arbitrary sets and operations based on certain properties (such as associativity).

Binary operations

- A binary operation on a set S is a function $f: S \times S \rightarrow S$.
- ▶ e.g. $add : \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ for addition of natural numbers.
- In infix notation, we write the operator between the operands, e. g. x + y instead of add(x, y).

Groups

Definition (Group) A group $G = (S, \cdot)$ is given by a set S and a binary operation \cdot on S that satisfy the group axioms: Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for all $x, y, z \in S$. ldentity element: There exists an $e \in S$ such that for all $x \in S$ it holds that $x \cdot e = e \cdot x = x$. Element *e* is called identity of neutral element of the group. linverse element: For every $x \in S$ there is a $y \in S$ such that $x \cdot y = y \cdot x = e$, where *e* is the identity element. A group is called abelian if \cdot is also commutative, i.e. for all $x, y \in S$ it holds that $x \cdot y = y \cdot x$. Cardinality |S| is called the order of the group.

Niels Henrik Abel: Norwegian mathematician (1802–1829), cf. Abel prize

Example: $(\mathbb{Z}, +)$

$(\mathbb{Z},+)$ is a group:

- ▶ \mathbb{Z} is closed under addition, i. e. for $x, y \in \mathbb{Z}$ it holds that $x + y \in \mathbb{Z}$
- ▶ The + operator is associative: for all $x, x, z \in \mathbb{Z}$ it holds that (x + y) + z = x + (y + z).
- Integer 0 is the neutral element: for all integers x it holds that x + 0 = 0 + x = x.
- ► Every integer x has an inverse element in the integers, namely -x, because x + (-x) = (-x) + x = 0.

 $(\mathbb{Z}, +)$ also is an abelian group because for all $x, y \in \mathbb{Z}$ it holds that x + y = y + x.

Uniqueness of Identity and Inverses

Theorem

Every group $G = (S, \cdot)$ has only one identity element and for each $x \in S$ the inverse of x is unique.

Proof.

identity: Assume that there are two identity elements $e, e' \in S$ with $e \neq e'$. Then for all $x \in S$ it holds that $x \cdot e = e \cdot x = x$ and that $x \cdot e' = e' \cdot x = x$. Using x = e', we get $e' \cdot e = e'$ and using x = e we get $e' \cdot e = e$, so overall e' = e. $\frac{1}{2}$

inverse: homework assignment

We often denote the identity element with 1 and the inverse of x with x^{-1} .

Division – Right Quotient

Theorem Let $G = (S, \cdot)$ be a group. Then for all $a, b \in S$ the equation $x \cdot b = a$ has exactly one solution x in S, namely $x = a \cdot b^{-1}$. We call $a \cdot b^{-1}$ the right-quotient of a by b and also write it as a/b.

Proof.

It is a solution: With
$$x = a \cdot b^{-1}$$
 it holds that
 $x \cdot b = (a \cdot b^{-1}) \cdot b = a \cdot (b^{-1} \cdot b) = a \cdot \mathbf{1} = a$.
The solution is unique:
Assume x and x' are distinct solutions. Then $x \cdot b = a = x' \cdot b$.
Multiplying both sides by b^{-1} , we get $(x \cdot b) \cdot b^{-1} = (x' \cdot b) \cdot b^{-1}$
and with associativity $x \cdot (b \cdot b^{-1}) = x' \cdot (b \cdot b^{-1})$.
With the axiom on inverse elements this leads to $x \cdot \mathbf{1} = x' \cdot \mathbf{1}$ and
with the axiom on the identity element ultimately to $x = x'$. \notin

Division - Left Quotient

Theorem

Let $G = (S, \cdot)$ be a group. Then for all $a, b \in S$ the equation $b \cdot x = a$ has exactly one solution x in S, namely $x = b^{-1} \cdot a$. We call $b^{-1} \cdot a$ the left-quotient of a by b and also write it as $b \setminus a$.

Proof omitted

Quotients in Abelian Groups

Theorem If $G = (S, \cdot)$ is an abelian group then it holds for all $x, y \in S$ that $x/y = y \setminus x$.

Proof.

Consider arbitrary $x, y \in S$. As \cdot is commutative, it holds that $x/y = x \cdot y^{-1} = y^{-1} \cdot x = y \setminus x$.

Group Homomorphism

A group homomorphism is a function that preserves group structure:

Definition (Group homomorphism) Let $G = (S, \cdot)$ and $G' = (S', \circ)$ be groups. A homomorphism from G to G' is a function $f : S \to S'$ such that for all $x, y \in S$ it holds that $f(x \cdot y) = f(x) \circ f(y)$.

Definition (Group Isomorphism)

A group homomorphism that is bijective is called a group isomorphism. Groups G and H are called isomorphic if there is a group isomorphism from G to H.

From a practical perspective, isomorphic groups are identical up to renaming.

Group Homomorphism – Example

Outlook

- ▶ A subgroup of $G = (S, \cdot)$ is a group $H = (S', \circ)$ with $S' \subseteq S$ and \circ the restriction of \cdot to $S' \times S'$.
 - S' always contains the identity element and is closed under group operation and inverse
 - group homomorphisms preserve many properties of subgroups
- Other algebraic structures, e.g.
 - Semi-group: requires only associativity
 - Monoid: requires associativity and identity element
 - Ringoids: algebraic structures with two binary operations
 - multiplication and addition
 - multiplication distributes over addition
 - e.g. ring and field

B10.2 Symmetric Group and Permutation Groups

B10. A Glimpse of Abstract Algebra

Symmetric Group and Permutation Groups

Reminder: Permutations

Definition (Permutation) Let S be a set. A bijection $\pi: S \to S$ is called a permutation of S.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 26, 2020 16 / 23

Symmetric Group

Theorem (Symmetric Group)

Let M be a set. Then $Sym(M) = (S, \cdot)$, where

- S is the set of all permutations of M, and
- denotes function composition,
- is a group, called the symmetric group of M.

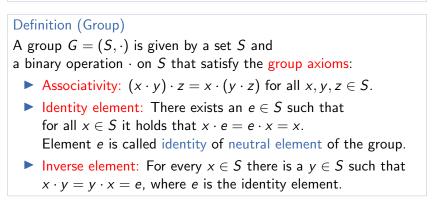
For finite set $M = \{1, ..., n\}$, we also use S_n to refer to the symmetric group of M.

Is the symmetric group abelian? What's the order of S_n ?

Symmetric Group – Proof I

Theorem

For set M, Sym $(M) = (\{\sigma : M \to M \mid \sigma \text{ is bijective}\}, \cdot)$ is a group.



To show: closure, associativity, identity, inverse element

Symmetric Group – Proof II

Theorem

For set M, Sym $(M) = (\{\sigma : M \to M \mid \sigma \text{ is bijective}\}, \cdot)$ is a group.

Proof.

- Closure: The product of two permutations of M is a permutation of M and hence in the set.
- Associativity: Function composition is always associative.
- Identity element: Function id : M → M with id(x) = x is a permutation and for every permutation σ of M it holds that σid = idσ = σ.
- ▶ Inverse element: For every permutation σ of M, also the inverse function σ^{-1} is a permutation of M and has the required properties.

Generating Sets

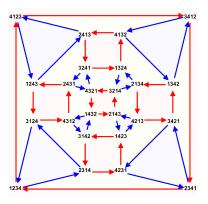
Definition A generating set of a group $G = (S, \circ)$ is a set $S' \subseteq S$ such that every $e \in S$ can be expressed as a combination (under \circ) of finitely many elements of S' and their inverses.

Empty product is identity by definition, so no need to have it in S'.

▶ For n ≥ 2, S_n is generated by {(i i+1) | i ∈ {1,..., n-1}}.
▶ For n > 2, S_n is generated by {(1 2), (1 ... n)}.

Generating Sets – Example

$$\left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix} \right\} \text{ is a generating set of } S_4.$$



Permutation Group

Sometimes, we do not want to consider all possible permutations.

Definition (Permutation Group) A permutation group is a group $G = (S, \cdot)$, where S is a set of permutations of some set M and \cdot is the composition of permutations in S.

Every permutation group is a subgroup of a symmetric group and every such subgroup is a permutation group.

Permutation Group – Example

\wedge				1	2	3						
				4		5						
				6	7	8						
	9	10	11	17	18	19	25	26	27	33	34	35
	12		13	20		21	28		29	36		37
	14	15	16	22	23	24	30	31	32	38	39	40
				41	42	43						
						45						
-				46	47	48						

Consider all permutations achievable with valid moves.

- Subgroup of S_{48} with order 43 252 003 274 489 856 000 $\approx 4.3 \cdot 10^{19}$ (43 quintillion)
- S_{48} has order $48! \approx 1.24 \cdot 10^{61}$