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Permutations as Functions

I A permutation rearranges objects.

I Consider for example sequence o2, o1, o3, o4
I Let’s rearrange the objects, e. g. to o3, o1, o4, o2.

I The object at position 1 was moved to position 4,
I the one from position 3 to position 1,
I the one from position 4 to position 3 and
I the one at position 2 stayed where it was.

I This corresponds to a bijection σ : {1, 2, 3, 4} → {1, 2, 3, 4}
with σ(1) = 4, σ(2) = 2, σ(3) = 1, σ(4) = 3

I We call such a bijection a permutation.
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Permutation – Definition

Definition (Permutation)

Let S be a set. A bijection π : S → S is called a permutation of S .

We will focus on permutations of finite sets.

The actual objects in S don’t matter,
so we mostly work with {1, . . . , |S |}.
How many permutations are there for a finite set S?
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Two-line and One-line Notation (for Finite Sets)

Consider π with
π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, π(5) = 1, π(6) = 6.

Two-line notation lists the elements of S in the first row and the
image of each element in the second row:

π =

(
1 2 3 4 5 6
2 5 4 3 1 6

)
=

(
3 5 1 6 4 2
4 1 2 6 3 5

)

One-line notation only lists the second row for the natural order of
the first row:

π = (2 5 4 3 1 6)

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science October 21, 2020 7 / 20

B9. Permutations Permutations

Composition

I Permutations of the same set can be composed
with function composition.

I Instead of σ ◦ π, we write σπ.

I We call σπ the product of π and σ.

I The product of permutations is a permutation. Why?

I Example:

σ =

(
1 2 3 4 5
3 2 4 1 5

)
π =

(
1 2 3 4 5
3 1 5 2 4

)

σπ =

πσ =
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Cycle Notation – Idea

One-line notation still needs one entry per element and
the effect of repeated application is hard to see.

Consider again π with
π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, π(5) = 1, π(6) = 6.

1 2 3 4 5 6

There is a cycle (1 2 5) = (2 5 1) = (5 1 2)
and a cycle (3 4) = (4 3).

Idea: Write π as product of such cycles.
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Cycles

Definition (Cycle)

A permutation σ of finite set S has a
k-cycle (e1 e2 . . . ek) if

I ei ∈ S for i ∈ {1, . . . , k}
I ei 6= ej for i 6= j

I σ(ei ) = ei+1 for i ∈ {1, . . . , k − 1}
I σ(ek) = e1

I Don’t confuse cycles with permutations in one-line notation.

I A 2-cycle is called a transposition

I A 1-cycle is called a fixed-point of σ.

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science October 21, 2020 10 / 20

B9. Permutations Permutations

Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is cyclic if it has a single k-cycle with k > 1.

In cycle notation, we represent a cyclic permutation by this cycle.

For example:
Permutation σ of {1, . . . , 5} with σ = (1 3 4) in cycle
representation corresponds to

σ =

(
1 2 3 4 5
3 2 4 1 5

)
in two-line notation.

Question: Is this representation unique (canonical)?
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Cycle Notation – Example

We can write every permutation as a product of disjoint cycles.

Consider again π with
π(1) = 2, π(2) = 5, π(3) = 4, π(4) = 3, π(5) = 1, π(6) = 6.

1 2 3 4 5 6

There is a cycle (1 2 5) = (2 5 1) = (5 1 2)
and a cycle (3 4) = (4 3).

In cycle representation:
π = (1 2 5)(3 4)(6) = (1 2 5)(3 4)
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Cycle Notation – Algorithm

Let π be a permutation of finite set S .

1: function ComputeCycleRepresentation(π, S)
2: remaining = S
3: cycles = ∅
4: while remaining is not empty do
5: Remove any element e from remaining.
6: Start a new cycle c with e.
7: while π(e) ∈ remaining do
8: remaining = remaining \ {π(e)}
9: Extend c with π(e).

10: e = π(e)

11: cycles = cycles ∪ {c}
12: return cycles

The elements of cycles can be arranged in any order.  Why?
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Disjoint Cycles Commute

Theorem

Let π = (e1 . . . en) and π′ = (e ′1 . . . e ′m) be permutations
of set S in cycle notation and let π and π′ be disjoint,
i. e. ei 6= e ′j for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

Then ππ′ = π′π.

Proof.
Consider an arbitrary element e ∈ S . We distinguish three cases:

If e = ei for some i ∈ {1, . . . , n} then π(e) = ej for some
j ∈ {1, . . . , n}. Since the cycles are disjoint, π′(e) = e and
π′(π(e)) = π(e). Together, this gives π′(π(e)) = π(π′(e)).

If e = e ′i for some i ∈ {1, . . . ,m}, we can use the analogous
argument to show that π(π′(e)) = π′(π(e)).

If e occurs in neither cycle then π(e) = e and π′(e) = e, so
π′(π(e)) = e = π(π′(e)).
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In General Cycles Do not Commute

Consider cycles (1 2) and (2 3) and set S = {1, 2, 3}.

(1 2)(2 3) =

(2 3)(1 2) =
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Transpositions

Theorem
Every cycle can be expressed as a product of transpositions.

Proof idea.

Consider k-cycle σ = (e1 . . . ek).
We can express σ as (e1 ek)(e1 ek−1) . . . (e1 e2).
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Inverse

I Every permutation has an inverse,
which is again a permuation.
I If π is represented in two-line notation, we get π−1 by

swapping the rows, e. g.(
1 2 3 4 5
3 2 4 1 5

)−1

=

(
3 2 4 1 5
1 2 3 4 5

)
I If π is a cycle, we get π−1 by reversing the order of the

elements, e. g. (1 3 4 2)−1 = (2 4 3 1)
I (πσ)−1 = σ−1π−1
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Example

σ = (4 5)(2 3) π = (4 5)(2 1)

σπ−1 =
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Another Example

Determine the arrangement of some objects after applying a
permutation that operates on the locations.

and π permutation of {1, 2, 3}.

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration.

Then π ◦ f describes the resulting configuration.
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Last Example

Determine the permutation of locations that leads from one
configuration to the other.

⇒ .

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration and

function g with g( ) = 2, g( ) = 1, g( ) = 3
for the final configuration.

Then g ◦ f −1 describes the permutation.
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