

Discrete Mathematics in Computer Science

B9. Permutations

Malte Helmert, Gabriele Röger

University of Basel

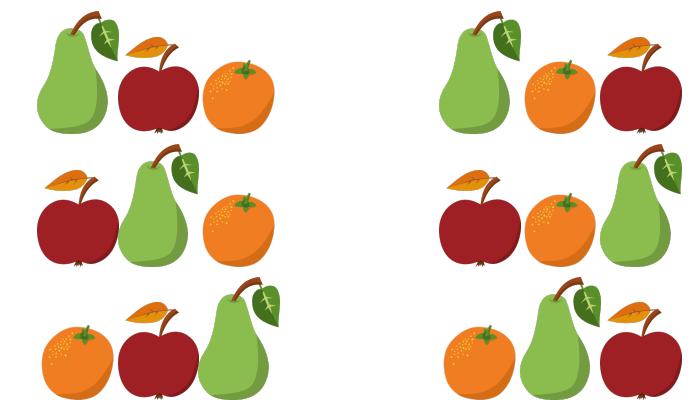
October 21, 2020

Discrete Mathematics in Computer Science

October 21, 2020 — B9. Permutations

B9.1 Permutations

B9.1 Permutations



Permutations as Functions

- ▶ A **permutation** rearranges objects.
- ▶ Consider for example sequence o_2, o_1, o_3, o_4
- ▶ Let's rearrange the objects, e. g. to o_3, o_1, o_4, o_2 .
 - ▶ The object at position 1 was moved to position 4,
 - ▶ the one from position 3 to position 1,
 - ▶ the one from position 4 to position 3 and
 - ▶ the one at position 2 stayed where it was.
- ▶ This corresponds to a **bijection** $\sigma : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ with $\sigma(1) = 4, \sigma(2) = 2, \sigma(3) = 1, \sigma(4) = 3$
- ▶ We call such a bijection a **permutation**.

Two-line and One-line Notation (for Finite Sets)

Consider π with

$$\pi(1) = 2, \pi(2) = 5, \pi(3) = 4, \pi(4) = 3, \pi(5) = 1, \pi(6) = 6.$$

Two-line notation lists the elements of S in the first row and the image of each element in the second row:

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 4 & 3 & 1 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 1 & 6 & 4 & 2 \\ 4 & 1 & 2 & 6 & 3 & 5 \end{pmatrix}$$

One-line notation only lists the second row for the natural order of the first row:

$$\pi = (2 \ 5 \ 4 \ 3 \ 1 \ 6)$$

Permutation – Definition

Definition (Permutation)

Let S be a set. A **bijection** $\pi : S \rightarrow S$ is called a **permutation of S** .

We will focus on permutations of finite sets.

The actual objects in S don't matter, so we mostly work with $\{1, \dots, |S|\}$.

How many permutations are there for a finite set S ?

Composition

- ▶ Permutations of the same set can be composed with function composition.
- ▶ Instead of $\sigma \circ \pi$, we write $\sigma\pi$.
- ▶ We call $\sigma\pi$ the **product** of π and σ .
- ▶ The product of permutations is a permutation. **Why?**
- ▶ **Example:**

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix} \quad \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$$

$$\sigma\pi =$$

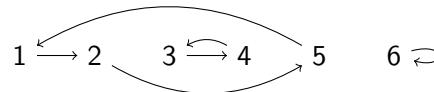
$$\pi\sigma =$$

Cycle Notation – Idea

One-line notation still needs one entry per element and the effect of repeated application is hard to see.

Consider again π with

$$\pi(1) = 2, \pi(2) = 5, \pi(3) = 4, \pi(4) = 3, \pi(5) = 1, \pi(6) = 6.$$



There is a cycle $(1 \ 2 \ 5) = (2 \ 5 \ 1) = (5 \ 1 \ 2)$ and a cycle $(3 \ 4) = (4 \ 3)$.

Idea: Write π as product of such cycles.

Cyclic Permutation

Definition (Cyclic Permutation)

A permutation is **cyclic** if it has a single k -cycle with $k > 1$.

In **cycle notation**, we represent a cyclic permutation by this cycle.

For example:

Permutation σ of $\{1, \dots, 5\}$ with $\sigma = (1 \ 3 \ 4)$ in cycle representation corresponds to

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}$$

in two-line notation.

Question: Is this representation unique (canonical)?

Cycles

Definition (Cycle)

A permutation σ of finite set S has a **k -cycle** $(e_1 \ e_2 \ \dots \ e_k)$ if

- ▶ $e_i \in S$ for $i \in \{1, \dots, k\}$
- ▶ $e_i \neq e_j$ for $i \neq j$
- ▶ $\sigma(e_i) = e_{i+1}$ for $i \in \{1, \dots, k-1\}$
- ▶ $\sigma(e_k) = e_1$

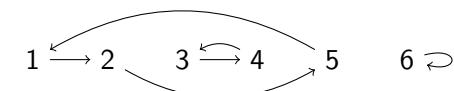
- ▶ Don't confuse cycles with permutations in one-line notation.
- ▶ A 2-cycle is called a **transposition**
- ▶ A 1-cycle is called a **fixed-point** of σ .

Cycle Notation – Example

We can write every permutation as a product of disjoint cycles.

Consider again π with

$$\pi(1) = 2, \pi(2) = 5, \pi(3) = 4, \pi(4) = 3, \pi(5) = 1, \pi(6) = 6.$$



There is a cycle $(1 \ 2 \ 5) = (2 \ 5 \ 1) = (5 \ 1 \ 2)$ and a cycle $(3 \ 4) = (4 \ 3)$.

In cycle representation:

$$\pi = (1 \ 2 \ 5)(3 \ 4)(6) = (1 \ 2 \ 5)(3 \ 4)$$

Cycle Notation – Algorithm

Let π be a permutation of finite set S .

```

1: function COMPUTECYCLEREPRESENTATION( $\pi, S$ )
2:   remaining =  $S$ 
3:   cycles =  $\emptyset$ 
4:   while remaining is not empty do
5:     Remove any element  $e$  from remaining.
6:     Start a new cycle  $c$  with  $e$ .
7:     while  $\pi(e) \in \text{remaining}$  do
8:       remaining = remaining \  $\{\pi(e)\}$ 
9:       Extend  $c$  with  $\pi(e)$ .
10:       $e = \pi(e)$ 
11:      cycles = cycles  $\cup \{c\}$ 
12:   return cycles

```

The elements of *cycles* can be arranged in any order. \rightsquigarrow Why?

In General Cycles Do not Commute

Consider cycles $(1 \ 2)$ and $(2 \ 3)$ and set $S = \{1, 2, 3\}$.

$$(1 \ 2)(2 \ 3) =$$

$$(2 \ 3)(1 \ 2) =$$

Disjoint Cycles Commute

Theorem

Let $\pi = (e_1 \ \dots \ e_n)$ and $\pi' = (e'_1 \ \dots \ e'_m)$ be permutations of set S in cycle notation and let π and π' be **disjoint**, i.e. $e_i \neq e'_j$ for $i \in \{1, \dots, n\}, j \in \{1, \dots, m\}$.

$$\text{Then } \pi\pi' = \pi'\pi.$$

Proof.

Consider an arbitrary element $e \in S$. We distinguish three cases:

If $e = e_i$ for some $i \in \{1, \dots, n\}$ then $\pi(e) = e_j$ for some $j \in \{1, \dots, n\}$. Since the cycles are disjoint, $\pi'(e) = e$ and $\pi'(\pi(e)) = \pi(e)$. Together, this gives $\pi'(\pi(e)) = \pi(\pi'(e))$.

If $e = e'_j$ for some $j \in \{1, \dots, m\}$, we can use the analogous argument to show that $\pi(\pi'(e)) = \pi'(\pi(e))$.

If e occurs in neither cycle then $\pi(e) = e$ and $\pi'(e) = e$, so $\pi'(\pi(e)) = e = \pi(\pi'(e))$. □

Transpositions

Theorem

Every cycle can be expressed as a product of transpositions.

Proof idea.

Consider k -cycle $\sigma = (e_1 \ \dots \ e_k)$.

We can express σ as $(e_1 \ e_k)(e_1 \ e_{k-1}) \dots (e_1 \ e_2)$. □

Inverse

- ▶ Every permutation has an inverse, which is again a permutation.
 - ▶ If π is represented in two-line notation, we get π^{-1} by swapping the rows, e.g.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 2 & 4 & 1 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

- ▶ If π is a cycle, we get π^{-1} by reversing the order of the elements, e.g. $(1 \ 3 \ 4 \ 2)^{-1} = (2 \ 4 \ 3 \ 1)$
- ▶ $(\pi\sigma)^{-1} = \sigma^{-1}\pi^{-1}$

Example

$$\sigma = (4 \ 5)(2 \ 3) \quad \pi = (4 \ 5)(2 \ 1)$$

$$\sigma\pi^{-1} =$$

Another Example

Determine the arrangement of some objects after applying a permutation that operates on the locations.

 and π permutation of $\{1, 2, 3\}$.

Define f with $f(\text{pear}) = 1$, $f(\text{apple}) = 2$, $f(\text{orange}) = 3$ to describe the initial configuration.

Then $\pi \circ f$ describes the resulting configuration.

Last Example

Determine the permutation of locations that leads from one configuration to the other.

Define f with $f(\text{pear}) = 1$, $f(\text{apple}) = 2$, $f(\text{orange}) = 3$ to describe the initial configuration and function g with $g(\text{pear}) = 2$, $g(\text{apple}) = 1$, $g(\text{orange}) = 3$ for the final configuration.

Then $g \circ f^{-1}$ describes the permutation.