

Discrete Mathematics in Computer Science

Partial and Total Functions

Malte Helmert, Gabriele Röger

University of Basel

Important Building Blocks of Discrete Mathematics

Important building blocks:

- sets
- relations
- **functions**

Important Building Blocks of Discrete Mathematics

Important building blocks:

- sets
- relations
- **functions**

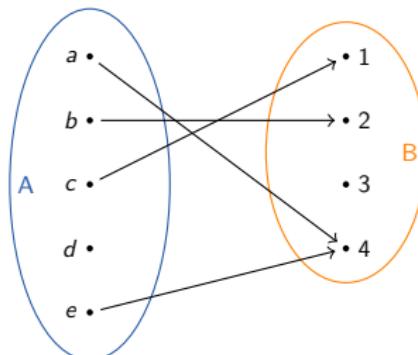
In principle, functions are just a special kind of relations:

- $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2$
- relation R over \mathbb{N}_0 with $R = \{(x, y) \mid x, y \in \mathbb{N}_0 \text{ and } y = x^2\}$.

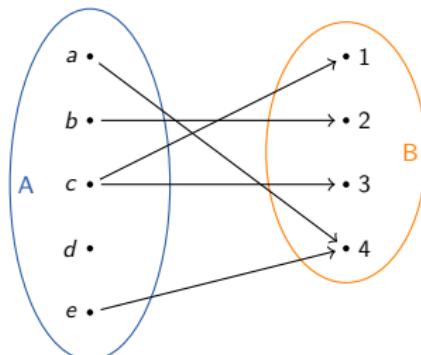
Functional Relations

Definition

A binary relation R over sets A and B is **functional** if for every $a \in A$ there is at most one $b \in B$ with $(a, b) \in R$.



functional



not functional

Functions – Examples

- $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2 + 1$

Functions – Examples

■ $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2 + 1$

■ $abs : \mathbb{Z} \rightarrow \mathbb{N}_0$ with

$$abs(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{otherwise} \end{cases}$$

Functions – Examples

- $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2 + 1$

- $abs : \mathbb{Z} \rightarrow \mathbb{N}_0$ with

$$abs(x) = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{otherwise} \end{cases}$$

- $distance : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}$ with

$$distance((x_1, y_1), (x_2, y_2)) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Partial Function – Example

Partial function $r : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Q}$ with

$$r(n, d) = \begin{cases} \frac{n}{d} & \text{if } d \neq 0 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Partial Functions

Definition (Partial function)

A **partial function** f from set A to set B (written $f : A \not\rightarrow B$) is given by a **functional relation** G over A and B .

Partial Functions

Definition (Partial function)

A **partial function** f from set A to set B (written $f : A \not\rightarrow B$) is given by a **functional relation** G over A and B .

Relation G is called the **graph** of f .

Partial Functions

Definition (Partial function)

A **partial function** f from set A to set B (written $f : A \nrightarrow B$) is given by a **functional relation** G over A and B .

Relation G is called the **graph** of f .

We write $f(x) = y$ for $(x, y) \in G$ and say
 y is the image of x under f .

If there is no $y \in B$ with $(x, y) \in G$, then $f(x)$ is undefined.

Partial Functions

Definition (Partial function)

A **partial function** f from set A to set B (written $f : A \not\rightarrow B$) is given by a **functional relation** G over A and B .

Relation G is called the **graph** of f .

We write $f(x) = y$ for $(x, y) \in G$ and say
 y is the image of x under f .

If there is no $y \in B$ with $(x, y) \in G$, then $f(x)$ is undefined.

Partial function $r : \mathbb{Z} \times \mathbb{Z} \not\rightarrow \mathbb{Q}$ with

$$r(n, d) = \begin{cases} \frac{n}{d} & \text{if } d \neq 0 \\ \text{undefined} & \text{otherwise} \end{cases}$$

has graph $\{(n, d), \frac{n}{d} \mid n \in \mathbb{Z}, d \in \mathbb{Z} \setminus \{0\}\} \subseteq \mathbb{Z}^2 \times \mathbb{Q}$.

Domain (of Definition), Codomain, Image

Definition (domain of definition, codomain, image)

Let $f : A \rightarrow B$ be a partial function.

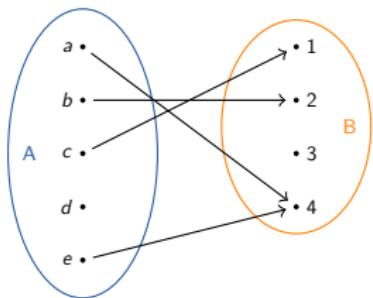
Set A is called the **domain** of f , set B is its **codomain**.

Domain (of Definition), Codomain, Image

Definition (domain of definition, codomain, image)

Let $f : A \rightarrow B$ be a partial function.

Set A is called the **domain** of f , set B is its **codomain**.



$f : \{a, b, c, d, e\} \rightarrow \{1, 2, 3, 4\}$
 $f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$
domain $\{a, b, c, d, e\}$
codomain $\{1, 2, 3, 4\}$

Domain (of Definition), Codomain, Image

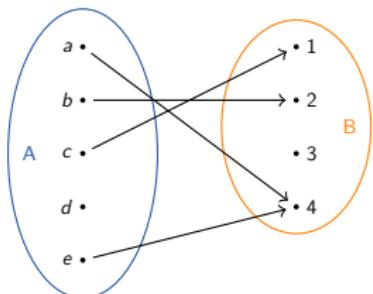
Definition (domain of definition, codomain, image)

Let $f : A \rightarrow B$ be a partial function.

Set A is called the **domain** of f , set B is its **codomain**.

The **domain of definition** of f is the set

$\text{dom}(f) = \{x \in A \mid \text{there is a } y \in B \text{ with } f(x) = y\}$.



$$f : \{a, b, c, d, e\} \rightarrow \{1, 2, 3, 4\}$$

$$f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$$

domain $\{a, b, c, d, e\}$

codomain $\{1, 2, 3, 4\}$

domain of definition $\text{dom}(f) = \{a, b, c, e\}$

Domain (of Definition), Codomain, Image

Definition (domain of definition, codomain, image)

Let $f : A \rightarrow B$ be a partial function.

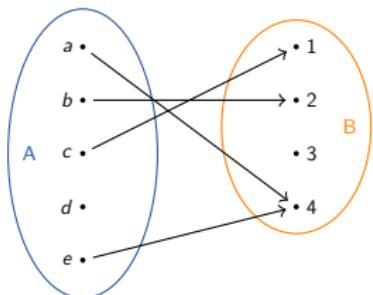
Set A is called the **domain** of f , set B is its **codomain**.

The **domain of definition** of f is the set

$\text{dom}(f) = \{x \in A \mid \text{there is a } y \in B \text{ with } f(x) = y\}$.

The **image** (or **range**) of f is the set

$\text{img}(f) = \{y \mid \text{there is an } x \in A \text{ with } f(x) = y\}$.



$$f : \{a, b, c, d, e\} \rightarrow \{1, 2, 3, 4\}$$

$$f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$$

domain $\{a, b, c, d, e\}$

codomain $\{1, 2, 3, 4\}$

domain of definition $\text{dom}(f) = \{a, b, c, e\}$

image $\text{img}(f) = \{1, 2, 4\}$

Preimage

The preimage contains all elements of the domain that are mapped to given elements of the codomain.

Definition (Preimage)

Let $f : A \rightarrow B$ be a partial function and let $Y \subseteq B$.

The **preimage of Y under f** is the set
 $f^{-1}[Y] = \{x \in A \mid f(x) \in Y\}$.

Preimage

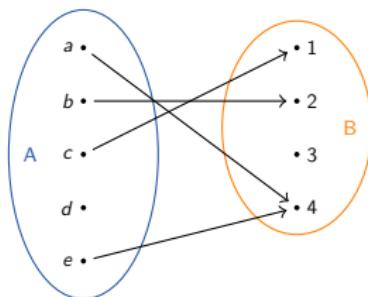
The preimage contains all elements of the domain that are mapped to given elements of the codomain.

Definition (Preimage)

Let $f : A \rightarrow B$ be a partial function and let $Y \subseteq B$.

The **preimage of Y under f** is the set

$$f^{-1}[Y] = \{x \in A \mid f(x) \in Y\}.$$



$$f^{-1}[\{1\}] =$$

$$f^{-1}[\{3\}] =$$

$$f^{-1}[\{4\}] =$$

$$f^{-1}[\{1, 2\}] =$$

Total Functions

Definition (Total function)

A (total) function $f : A \rightarrow B$ from set A to set B is a partial function from A to B such that $f(x)$ is defined for all $x \in A$.

Total Functions

Definition (Total function)

A (total) function $f : A \rightarrow B$ from set A to set B is a partial function from A to B such that $f(x)$ is defined for all $x \in A$.

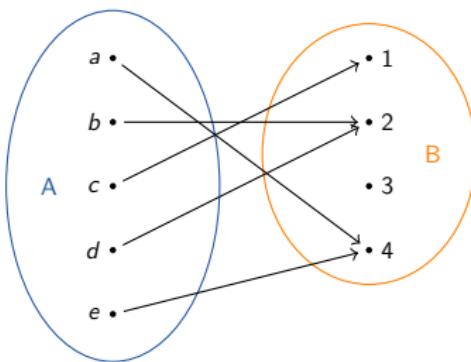
→ no difference between the domain and the domain of definition

Total Functions

Definition (Total function)

A **(total) function** $f : A \rightarrow B$ from set A to set B is a partial function from A to B such that $f(x)$ is defined for all $x \in A$.

→ no difference between the domain and the domain of definition



Specifying a Function

Some common ways of specifying a function:

- Listing the mapping **explicitly**, e. g.

$f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$ or
 $f = \{a \mapsto 4, b \mapsto 2, c \mapsto 1, e \mapsto 4\}$

Specifying a Function

Some common ways of specifying a function:

- Listing the mapping **explicitly**, e. g.
 $f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$ or
 $f = \{a \mapsto 4, b \mapsto 2, c \mapsto 1, e \mapsto 4\}$
- By a **formula**, e. g. $f(x) = x^2 + 1$

Specifying a Function

Some common ways of specifying a function:

- Listing the mapping **explicitly**, e. g.

$f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$ or
 $f = \{a \mapsto 4, b \mapsto 2, c \mapsto 1, e \mapsto 4\}$

- By a **formula**, e. g. $f(x) = x^2 + 1$

- By **recurrence**, e. g.

$0! = 1$ and

$n! = n(n - 1)!$ for $n > 0$

Specifying a Function

Some common ways of specifying a function:

- Listing the mapping **explicitly**, e.g.
 $f(a) = 4, f(b) = 2, f(c) = 1, f(e) = 4$ or
 $f = \{a \mapsto 4, b \mapsto 2, c \mapsto 1, e \mapsto 4\}$
- By a **formula**, e.g. $f(x) = x^2 + 1$
- By **recurrence**, e.g.
 $0! = 1$ and
 $n! = n(n - 1)!$ for $n > 0$
- In terms of other functions, e.g. inverse, composition

Relationship to Functions in Programming

```
def factorial(n):  
    if n == 0:  
        return 1  
    else:  
        return n * factorial(n-1)
```

→ Relationship between recursion and recurrence

Relationship to Functions in Programming

```
def foo(n):  
    value = ...  
    while <some condition>:  
        ...  
        value = ...  
    return value
```

- Does possibly not terminate on all inputs.
- Value is undefined for such inputs.
- Theoretical computer science: partial function

Relationship to Functions in Programming

```
import random
counter = 0

def bar(n):
    print("Hi! I got input", n)
    global counter
    counter += 1
    return random.choice([1,2,n])
```

- Functions in programming don't always compute mathematical functions (except *purely functional languages*).
- In addition, not all mathematical functions are computable.

Discrete Mathematics in Computer Science

Operations on Partial Functions

Malte Helmert, Gabriele Röger

University of Basel

Restrictions and Extensions

Definition (restriction and extension)

Let $f : A \rightarrow B$ be a partial function and let $X \subseteq A$.

The **restriction of f to X** is the partial function $f|_X : X \rightarrow B$ with $f|_X(x) = f(x)$ for all $x \in X$.

Restrictions and Extensions

Definition (restriction and extension)

Let $f : A \rightarrow B$ be a partial function and let $X \subseteq A$.

The **restriction of f to X** is the partial function $f|_X : X \rightarrow B$ with $f|_X(x) = f(x)$ for all $x \in X$.

A function $f' : A' \rightarrow B$ is called an **extension of f** if $A \subseteq A'$ and $f'|_A = f$.

Restrictions and Extensions

Definition (restriction and extension)

Let $f : A \rightarrow B$ be a partial function and let $X \subseteq A$.

The **restriction of f to X** is the partial function $f|_X : X \rightarrow B$ with $f|_X(x) = f(x)$ for all $x \in X$.

A function $f' : A' \rightarrow B$ is called an **extension of f** if $A \subseteq A'$ and $f'|_A = f$.

The restriction of f to its domain of definition is a total function.

Restrictions and Extensions

Definition (restriction and extension)

Let $f : A \rightarrow B$ be a partial function and let $X \subseteq A$.

The **restriction of f to X** is the partial function $f|_X : X \rightarrow B$ with $f|_X(x) = f(x)$ for all $x \in X$.

A function $f' : A' \rightarrow B$ is called an **extension of f** if $A \subseteq A'$ and $f'|_A = f$.

The restriction of f to its domain of definition is a total function.

What's the graph of the restriction?

Restrictions and Extensions

Definition (restriction and extension)

Let $f : A \rightarrow B$ be a partial function and let $X \subseteq A$.

The **restriction of f to X** is the partial function $f|_X : X \rightarrow B$ with $f|_X(x) = f(x)$ for all $x \in X$.

A function $f' : A' \rightarrow B$ is called an **extension of f** if $A \subseteq A'$ and $f'|_A = f$.

The restriction of f to its domain of definition is a total function.

What's the graph of the restriction?

What's the restriction of f to its domain?

Function Composition

Definition (Composition of partial functions)

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be partial functions.

The **composition of f and g** is $g \circ f : A \rightarrow C$ with

$$(g \circ f)(x) = \begin{cases} g(f(x)) & \text{if } f \text{ is defined for } x \text{ and} \\ & g \text{ is defined for } f(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Function Composition

Definition (Composition of partial functions)

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be partial functions.

The **composition of f and g** is $g \circ f : A \rightarrow C$ with

$$(g \circ f)(x) = \begin{cases} g(f(x)) & \text{if } f \text{ is defined for } x \text{ and} \\ & g \text{ is defined for } f(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Corresponds to relation composition of the graphs.

Function Composition

Definition (Composition of partial functions)

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be partial functions.

The **composition of f and g** is $g \circ f : A \rightarrow C$ with

$$(g \circ f)(x) = \begin{cases} g(f(x)) & \text{if } f \text{ is defined for } x \text{ and} \\ & g \text{ is defined for } f(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Corresponds to relation composition of the graphs.

If f and g are functions, their composition is a function.

Function Composition

Definition (Composition of partial functions)

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be partial functions.

The **composition of f and g** is $g \circ f : A \rightarrow C$ with

$$(g \circ f)(x) = \begin{cases} g(f(x)) & \text{if } f \text{ is defined for } x \text{ and} \\ & g \text{ is defined for } f(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Corresponds to relation composition of the graphs.

If f and g are functions, their composition is a function.

Example:

$$f : \mathbb{N}_0 \rightarrow \mathbb{N}_0 \quad \text{with } f(x) = x^2$$

$$g : \mathbb{N}_0 \rightarrow \mathbb{N}_0 \quad \text{with } g(x) = x + 3$$

$$(g \circ f)(x) =$$

Properties of Function Composition

Function composition is

- not commutative:

Properties of Function Composition

Function composition is

- not commutative:
 - $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2$

Properties of Function Composition

Function composition is

- not commutative:
 - $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2$
 - $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x + 3$

Properties of Function Composition

Function composition is

- not commutative:
 - $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2$
 - $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x + 3$
 - $(g \circ f)(x) = x^2 + 3$

Properties of Function Composition

Function composition is

- **not commutative:**

- $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2$
- $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x + 3$
- $(g \circ f)(x) = x^2 + 3$
- $(f \circ g)(x) = (x + 3)^2$

Properties of Function Composition

Function composition is

- **not commutative:**

- $f : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $f(x) = x^2$
- $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x + 3$
- $(g \circ f)(x) = x^2 + 3$
- $(f \circ g)(x) = (x + 3)^2$

- **associative**, i. e. $h \circ (g \circ f) = (h \circ g) \circ f$

→ analogous to associativity of relation composition

Function Composition in Programming

We implicitly compose functions all the time...

```
def foo(n):  
    ...  
    x = somefunction(n)  
    y = someotherfunction(x)  
    ...
```

Function Composition in Programming

We implicitly compose functions all the time...

```
def foo(n):  
    ...  
    x = somefunction(n)  
    y = someotherfunction(x)  
    ...
```

Many languages also allow explicit composition of functions,
e.g. in Haskell:

```
incr x = x + 1  
square x = x * x  
squareplusone = incr . square
```

Discrete Mathematics in Computer Science

Properties of Functions

Malte Helmert, Gabriele Röger

University of Basel

Properties of Functions

- Partial functions map every element of their domain to at most one element of their codomain,
total functions map it to exactly one such value.

Properties of Functions

- Partial functions map every element of their domain to at most one element of their codomain,
total functions map it to exactly one such value.
- Different elements of the domain can have the same image.

Properties of Functions

- Partial functions map every element of their domain to at most one element of their codomain,
total functions map it to exactly one such value.
- Different elements of the domain can have the same image.
- There can be values of the codomain
that aren't the image of any element of the domain.

Properties of Functions

- Partial functions map every element of their domain to at most one element of their codomain,
total functions map it to exactly one such value.
- Different elements of the domain can have the same image.
- There can be values of the codomain that aren't the image of any element of the domain.
- We often want to exclude such cases
→ define additional properties to say this quickly

Injective Functions

An **injective function** maps distinct elements of its domain to distinct elements of its co-domain.

Definition (Injective Function)

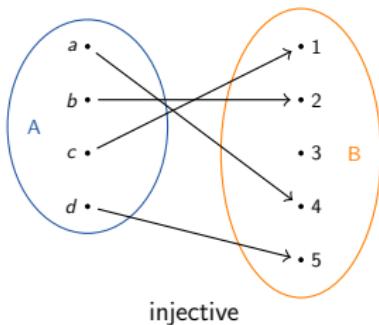
A function $f : A \rightarrow B$ is **injective** (also **one-to-one** or an **injection**) if for all $x, y \in A$ with $x \neq y$ it holds that $f(x) \neq f(y)$.

Injective Functions

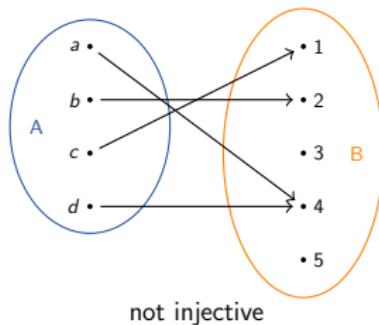
An **injective function** maps distinct elements of its domain to distinct elements of its co-domain.

Definition (Injective Function)

A function $f : A \rightarrow B$ is **injective** (also **one-to-one** or an **injection**) if for all $x, y \in A$ with $x \neq y$ it holds that $f(x) \neq f(y)$.



injective



not injective

Injective Functions – Examples

Which of these functions are injective?

- $f : \mathbb{Z} \rightarrow \mathbb{N}_0$ with $f(x) = |x|$
- $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x^2$
- $h : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $h(x) = \begin{cases} x - 1 & \text{if } x \text{ is odd} \\ x + 1 & \text{if } x \text{ is even} \end{cases}$

Composition of Injective Functions

Theorem

*If $f : A \rightarrow B$ and $g : B \rightarrow C$ are injective functions
then also $g \circ f$ is injective.*

Composition of Injective Functions

Theorem

*If $f : A \rightarrow B$ and $g : B \rightarrow C$ are injective functions
then also $g \circ f$ is injective.*

Proof.

Consider arbitrary elements $x, y \in A$ with $x \neq y$.

Since f is injective, we know that $f(x) \neq f(y)$.

As g is injective, this implies that $g(f(x)) \neq g(f(y))$.

With the definition of $g \circ f$, we conclude that

$(g \circ f)(x) \neq (g \circ f)(y)$.

Overall, this shows that $g \circ f$ is injective. □

Surjective Functions

A **surjective function** maps at least one elements to every element of its co-domain.

Definition (Surjective Function)

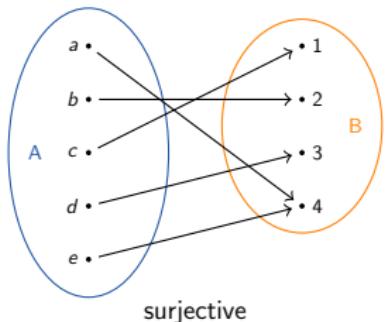
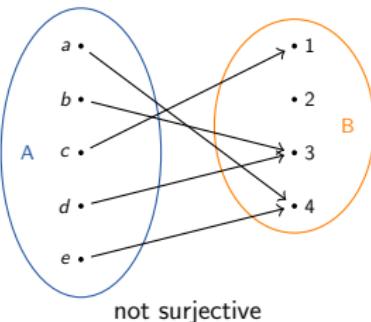
A function $f : A \rightarrow B$ is **surjective** (also **onto** or a **surjection**) if its **image is equal to its codomain**, i. e. for all $y \in B$ there is an $x \in A$ with $f(x) = y$.

Surjective Functions

A **surjective function** maps at least one elements to every element of its co-domain.

Definition (Surjective Function)

A function $f : A \rightarrow B$ is **surjective** (also **onto** or a **surjection**) if its **image is equal to its codomain**, i. e. for all $y \in B$ there is an $x \in A$ with $f(x) = y$.



Surjective Functions – Examples

Which of these functions are surjective?

- $f : \mathbb{Z} \rightarrow \mathbb{N}_0$ with $f(x) = |x|$
- $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x^2$
- $h : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $h(x) = \begin{cases} x - 1 & \text{if } x \text{ is odd} \\ x + 1 & \text{if } x \text{ is even} \end{cases}$

Composition of Surjective Functions

Theorem

If $f : A \rightarrow B$ and $g : B \rightarrow C$ are surjective functions then also $g \circ f$ is surjective.

Composition of Surjective Functions

Theorem

If $f : A \rightarrow B$ and $g : B \rightarrow C$ are surjective functions then also $g \circ f$ is surjective.

Proof.

Consider an arbitrary element $z \in C$.

Since g is surjective, there is a $y \in B$ with $g(y) = z$.

As f is surjective, for such a y there is an $x \in A$ with $f(x) = y$ and thus $g(f(x)) = z$.

Overall, for every $z \in C$ there is an $x \in A$ with

$(g \circ f)(x) = g(f(x)) = z$, so $g \circ f$ is surjective.

Bijective Functions

A **bijective** function pairs every element of its domain with exactly one element of its codomain and every element of the codomain is paired with exactly one element of the domain.

Definition (Bijective Function)

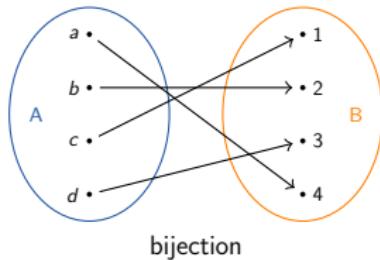
A function is **bijective** (also a **one-to-one correspondence** or a **bijection**) if it is **injective** and **surjective**.

Bijective Functions

A **bijective** function pairs every element of its domain with exactly one element of its codomain and every element of the codomain is paired with exactly one element of the domain.

Definition (Bijective Function)

A function is **bijective** (also a **one-to-one correspondence** or a **bijection**) if it is **injective** and **surjective**.

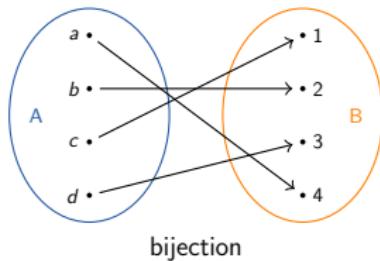


Bijection Functions

A **bijection** function pairs every element of its domain with exactly one element of its codomain and every element of the codomain is paired with exactly one element of the domain.

Definition (Bijection Function)

A function is **bijection** (also a **one-to-one correspondence** or a **bijection**) if it is **injective** and **surjective**.



Corollary

The composition of two bijection functions is bijection.

Bijective Functions – Examples

Which of these functions are bijective?

- $f : \mathbb{Z} \rightarrow \mathbb{N}_0$ with $f(x) = |x|$
- $g : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $g(x) = x^2$
- $h : \mathbb{N}_0 \rightarrow \mathbb{N}_0$ with $h(x) = \begin{cases} x - 1 & \text{if } x \text{ is odd} \\ x + 1 & \text{if } x \text{ is even} \end{cases}$

Inverse Function

Definition

Let $f : A \rightarrow B$ be a bijection.

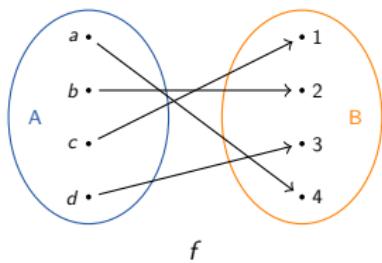
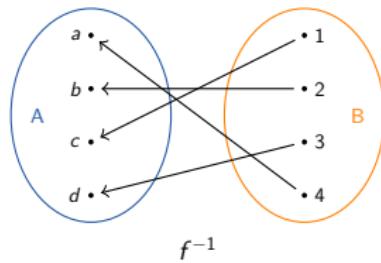
The **inverse function** of f is the function $f^{-1} : B \rightarrow A$ with $f^{-1}(y) = x$ iff $f(x) = y$.

Inverse Function

Definition

Let $f : A \rightarrow B$ be a bijection.

The **inverse function** of f is the function $f^{-1} : B \rightarrow A$ with $f^{-1}(y) = x$ iff $f(x) = y$.



Inverse Function and Composition

Theorem

Let $f : A \rightarrow B$ be a bijection.

- 1 For all $x \in A$ it holds that $f^{-1}(f(x)) = x$.
- 2 For all $y \in B$ it holds that $f(f^{-1}(y)) = y$.
- 3 $(f^{-1})^{-1} = f$

Inverse Function and Composition

Theorem

Let $f : A \rightarrow B$ be a bijection.

- 1 For all $x \in A$ it holds that $f^{-1}(f(x)) = x$.
- 2 For all $y \in B$ it holds that $f(f^{-1}(y)) = y$.
- 3 $(f^{-1})^{-1} = f$

Proof sketch.

- 1 For $x \in A$ let $y = f(x)$. Then $f^{-1}(f(x)) = f^{-1}(y) = x$

Inverse Function and Composition

Theorem

Let $f : A \rightarrow B$ be a bijection.

- 1 For all $x \in A$ it holds that $f^{-1}(f(x)) = x$.
- 2 For all $y \in B$ it holds that $f(f^{-1}(y)) = y$.
- 3 $(f^{-1})^{-1} = f$

Proof sketch.

- 1 For $x \in A$ let $y = f(x)$. Then $f^{-1}(f(x)) = f^{-1}(y) = x$
- 2 For $y \in B$ there is exactly one x with $y = f(x)$. With this x it holds that $f^{-1}(y) = x$ and overall $f(f^{-1}(y)) = f(x) = y$.

Inverse Function and Composition

Theorem

Let $f : A \rightarrow B$ be a bijection.

- 1 For all $x \in A$ it holds that $f^{-1}(f(x)) = x$.
- 2 For all $y \in B$ it holds that $f(f^{-1}(y)) = y$.
- 3 $(f^{-1})^{-1} = f$

Proof sketch.

- 1 For $x \in A$ let $y = f(x)$. Then $f^{-1}(f(x)) = f^{-1}(y) = x$
- 2 For $y \in B$ there is exactly one x with $y = f(x)$. With this x it holds that $f^{-1}(y) = x$ and overall $f(f^{-1}(y)) = f(x) = y$.
- 3 Def. of inverse: $(f^{-1})^{-1}(x) = y$ iff $f^{-1}(y) = x$ iff $f(x) = y$.

Inverse Function

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections.

Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Inverse Function

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be bijections.

Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof.

We need to show that for all $x \in C$ it holds that

$$(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x).$$

Consider an arbitrary $x \in C$ and let $y = (g \circ f)^{-1}(x)$.

By the definition of the inverse $(g \circ f)(y) = x$.

Let $z = f(y)$. With $(g \circ f)(y) = g(f(y))$, we know that $x = g(z)$.

From $z = f(y)$ we get $f^{-1}(z) = y$ and

from $x = g(z)$ we get $g^{-1}(x) = z$.

This gives $(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = f^{-1}(z) = y$.

□

Summary

- **injective function**: maps distinct elements of its domain to distinct elements of its co-domain.
- **surjective function**: maps at least one elements to every element of its co-domain.
- **bijective function**: injective and surjective
→ one-to-one correspondence
- Bijective functions are invertible. The **inverse** function of f maps the image of x under f to x .