Discrete Mathematics in Computer Science B7. Operations on Relations

Malte Helmert, Gabriele Röger

University of Basel

October 14, 2020

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

B7. Operations on Relations Operations on Relations

B7.1 Operations on Relations

Discrete Mathematics in Computer Science

October 14, 2020 — B7. Operations on Relations

B7.1 Operations on Relations

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

.

B7. Operations on Relations

Operations on Relations

Relations: Recap

- ▶ A relation over sets $S_1, ..., S_n$ is a set $R \subseteq S_1 \times ... \times S_n$.
- ► A binary relation is a relation over two sets.
- A homogeneous relation R over set S is a binary relation $R \subseteq S \times S$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

3 / 12

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

4 / 12

Set Operations

- ► Relations are sets of tuples, so we can build their union, intersection, complement,
- Let R be a relation over S_1, \ldots, S_n and R' a relation over S'_1, \ldots, S'_n . Then $R \cup R'$ is a relation over $S_1 \cup S'_1, \ldots, S_n \cup S'_n$. With the standard relations <, = and \le for \mathbb{N}_0 , relation \le corresponds to the union of relations < and =.
- Let R and R' be relations over n sets. Then $R \cap R'$ is a relation. Over which sets?

With the standard relations \leq ,= and \geq for \mathbb{N}_0 , relation = corresponds to the intersection of \leq and \geq .

▶ If R is a relation over S_1, \ldots, S_n then so is the complementary relation $\bar{R} = (S_1 \times \cdots \times S_n) \setminus R$. With the standard relations for \mathbb{N}_0 , relation = is the complementary relation of \neq and > the one of \leq .

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

5 / 12

Inverse of a Relation

Definition

B7. Operations on Relations

Let $R \subseteq A \times B$ be a binary relation over A and B.

The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$

- ▶ The inverse of the < relation over \mathbb{N}_0 is the > relation.
- ▶ Relation R with xRy iff person x has a key for y.
 Inverse: Q with aQb iff lock a can be openened by person b.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

B7. Operations on Relations

Operations on Relations

Composition of Relations

Definition (Composition of relations)

Let R_1 be a relation over A and B and R_2 be a relation over B and C.

The composition of R_1 and R_2 is the relation $R_2 \circ R_1$ with:

$$R_2 \circ R_1 = \{(a,c) \mid \text{there is a } b \in B \text{ with}$$

 $(a,b) \in R_1 \text{ and } (b,c) \in R_2\}$

How can we illustrate this graphically?

B7. Operations on Relations

Operations on Relations

Composition is Associative

Theorem (Associativity of composition)

Let S_1, \ldots, S_4 be sets and R_1, R_2, R_3 relations with $R_i \subseteq S_i \times S_{i+1}$. Then

$$R_3 \circ (R_2 \circ R_1) = (R_3 \circ R_2) \circ R_1.$$

Proof.

It holds that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there is an x_3 with $(x_1, x_3) \in R_2 \circ R_1$ and $(x_3, x_4) \in R_3$.

As $(x_1, x_3) \in R_2 \circ R_1$ iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_3) \in R_2$, we have overall that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there are x_2, x_3 with $(x_1, x_2) \in R_1$, $(x_2, x_3) \in R_2$ and $(x_3, x_4) \in R_3$.

This is the case iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_4) \in R_3 \circ R_2$, which holds iff $(x_1, x_4) \in (R_3 \circ R_2) \circ R_1$.

Transitive Closure

Definition (Transitive closure)

The transitive closure R^* of a relation R over set S is the smallest relation over S that is transitive and has R as a subset.

The transitive closure always exists. Why?

Example: If aRb specifies that block a lies on block b, what does R^* express?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

Transitive Closure II

B7. Operations on Relations

Define the i-th power of a homogeneous relation R as

$$R^1 = R$$
 if $i = 1$ and $R^i = R \circ R^{i-1}$ for $i > 1$

Theorem

Let R be a relation over set S. Then $R^* = \bigcup_{i=1}^{\infty} R^i$.

Without proof.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

October 14, 2020

B7. Operations on Relations

Operations on Relations

Other Operators

- ▶ There are many more operators, also for general relations.
- ► Highly relevant for queries over relational databases.
- For example, join operators combine relations based on common entries.
- Example for a natural join:

Employee				
Name	Empld	DeptName		
Harry	3415	Finance		
Sally	2241	Sales		
George	3401	Finance		
Harriet	2202	Sales		
Mary	1257	Human Resources		

Production Charles

Employee ⋈ Dept					
Name	Empld	DeptName	Manager		
Harry	3415	Finance	George		
Sally	2241	Sales	Harriet		
George	3401	Finance	George		
Harriet	2202	Sales	Harriet		

(Source: Wikipedia)

B7. Operations on Relations

Operations on Relations

Summary

► Relations: general, binary, homogeneous

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

- ► Properties: reflexivity, symmetry, transitivity (and related properties)
- ► Special relations: equivalence relations, order relations
- ► Operations: inverse, composition, transitive closure