Discrete Mathematics in Computer Science B7. Operations on Relations

Malte Helmert, Gabriele Röger
University of Basel
October 14, 2020

B7.1 Operations on Relations

Discrete Mathematics in Computer Science
October 14, 2020 - B7. Operations on Relations

B7.1 Operations on Relations

- A relation over sets S_{1}, \ldots, S_{n} is a set $R \subseteq S_{1} \times \cdots \times S_{n}$.
- A binary relation is a relation over two sets.
- A homogeneous relation R over set S is a binary relation $R \subseteq S \times S$.
- Relations are sets of tuples, so we can build their union, intersection, complement,
- Let R be a relation over S_{1}, \ldots, S_{n} and R^{\prime} a relation over $S_{1}^{\prime}, \ldots, S_{n}^{\prime}$. Then $R \cup R^{\prime}$ is a relation over $S_{1} \cup S_{1}^{\prime}, \ldots, S_{n} \cup S_{n}^{\prime}$. With the standard relations $<,=$ and \leq for \mathbb{N}_{0}, relation \leq corresponds to the union of relations $<$ and $=$.
- Let R and R^{\prime} be relations over n sets.

Then $R \cap R^{\prime}$ is a relation.
Over which sets?
With the standard relations $\leq,=$ and \geq for \mathbb{N}_{0},
relation $=$ corresponds to the intersection of \leq and \geq.

- If R is a relation over S_{1}, \ldots, S_{n}
then so is the complementary relation $\bar{R}=\left(S_{1} \times \cdots \times S_{n}\right) \backslash R$.
With the standard relations for \mathbb{N}_{0}, relation $=$ is the
complementary relation of \neq and $>$ the one of \leq.

Definition

Let $R \subseteq A \times B$ be a binary relation over A and B.
The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1}=\{(b, a) \mid(a, b) \in R\}$.

- The inverse of the $<$ relation over \mathbb{N}_{0} is the $>$ relation.
- Relation R with $x R y$ iff person x has a key for y. Inverse: Q with $a Q b$ iff lock a can be openened by person b.
B7. Operations on Relations
Composition of Relations

Definition (Composition of relations)
Let R_{1} be a relation over A and B and
R_{2} be a relation over B and C.
The composition of R_{1} and R_{2} is the relation $R_{2} \circ R_{1}$ with:
$\qquad$$R_{2} \circ R_{1}=\{(a, c) \mid$ there is a $b \in B$ with $(a, b) \in R_{1}$ and $\left.(b, c) \in R_{2}\right\}$

Composition is Associative

Theorem (Associativity of composition)
Let S_{1}, \ldots, S_{4} be sets and R_{1}, R_{2}, R_{3} relations with $R_{i} \subseteq S_{i} \times S_{i+1}$. Then

$$
R_{3} \circ\left(R_{2} \circ R_{1}\right)=\left(R_{3} \circ R_{2}\right) \circ R_{1}
$$

Proof.

It holds that $\left(x_{1}, x_{4}\right) \in R_{3} \circ\left(R_{2} \circ R_{1}\right)$ iff there is an x_{3} with $\left(x_{1}, x_{3}\right) \in R_{2} \circ R_{1}$ and $\left(x_{3}, x_{4}\right) \in R_{3}$.

As $\left(x_{1}, x_{3}\right) \in R_{2} \circ R_{1}$ iff there is an x_{2} with $\left(x_{1}, x_{2}\right) \in R_{1}$ and $\left(x_{2}, x_{3}\right) \in R_{2}$, we have overall that $\left(x_{1}, x_{4}\right) \in R_{3} \circ\left(R_{2} \circ R_{1}\right)$ iff there are x_{2}, x_{3} with $\left(x_{1}, x_{2}\right) \in R_{1},\left(x_{2}, x_{3}\right) \in R_{2}$ and $\left(x_{3}, x_{4}\right) \in R_{3}$.
This is the case iff there is an x_{2} with $\left(x_{1}, x_{2}\right) \in R_{1}$ and
$\left(x_{2}, x_{4}\right) \in R_{3} \circ R_{2}$, which holds iff $\left(x_{1}, x_{4}\right) \in\left(R_{3} \circ R_{2}\right) \circ R_{1}$.

Definition (Transitive closure)

The transitive closure R^{*} of a relation R over set S is the smallest relation over S that is transitive and has R as a subset.

The transitive closure always exists. Why?
Example: If $a R b$ specifies that block a lies on block b, what does R^{*} express?

Define the i-th power of a homogeneous relation R as

$$
\begin{array}{ll}
R^{1}=R & \text { if } i=1 \text { and } \\
R^{i}=R \circ R^{i-1} & \text { for } i>1
\end{array}
$$

Theorem
Let R be a relation over set S. Then $R^{*}=\bigcup_{i=1}^{\infty} R^{i}$.
Without proof.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

