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B5. Relations Relations

Relations: Informally

I Informally, a relation is some property that is true or false
for an (ordered) collection of objects.

I We already know some relations, e. g.
I ⊆ relation for sets
I ≤ relation for natural numbers

I These are examples of binary relations,
considering pairs of objects.

I There are also relations of higher arity, e. g.
I “x + y = z” for integers x , y , z .
I “The name, address and office number

belong to the same person.”

I Relations are for example important for relational databases,
semantic networks or knowledge representation and reasoning.

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science October 7, 2020 4 / 14



B5. Relations Relations

Relations

Definition (Relation)

Let S1, . . . ,Sn be sets.

A relation over S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

The arity of R is n.

I A relation of arity n is a set of n-tuples.

I The set contains the tuples
for which the informal property is true.
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Relations: Examples

I ⊆ = {(S , S ′) | S and S ′ are sets and
for every x ∈ S it holds that x ∈ S ′}

I ≤ = {(x , y) | x , y ∈ N0 and x < y or x = y}
I R = {(x , y , z) | x , y , z ∈ Z and x + y = z}
I R ′ = {(Gabi,Spiegelgasse 1, 04.005),

(Salomé, Spiegelgasse 1, 04.002),
(Florian, Spiegelgasse 1, 04.005),
(Augusto, Spiegelgasse 5, 04.001)}
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Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)

A binary relation is a relation over two sets A and B.

I Instead of (x , y) ∈ R, we also write xRy , e. g.
x ≤ y instead of (x , y) ∈ ≤

I If the sets are equal, we say “R is a binary relation over A”
instead of “R is a binary relation over A and A”.

I Such a relation over a set is also called
a homogeneous relation or an endorelation.
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Reflexivity

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive
if for all a ∈ A it holds that (a, a) ∈ R.

Which of these relations are reflexive?

I R = {(a, a), (a, b), (a, c), (b, a), (b, c), (c , c)} over {a, b, c}
I R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
I equality relation = on natural numbers

I less-than relation ≤ on natural numbers

I strictly-less-than relation < on natural numbers

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science October 7, 2020 9 / 14



B5. Relations Properties of Binary Relations

Irreflexivity

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive
if for all a ∈ A it holds that (a, a) /∈ R.

Which of these relations are irreflexive?

I R = {(a, a), (a, b), (a, c), (b, a), (b, c), (c , c)} over {a, b, c}
I R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
I equality relation = on natural numbers

I less-than relation ≤ on natural numbers

I strictly-less-than relation < on natural numbers
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Symmetry

Definition (symmetric)

A binary relation R over set A is symmetric
if for all a, b ∈ A it holds that (a, b) ∈ R iff (b, a) ∈ R.

Which of these relations are symmetric?

I R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
I R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
I equality relation = on natural numbers

I less-than relation ≤ on natural numbers

I strictly-less-than relation < on natural numbers
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Asymmetry and Antisymmetry

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if
for all a, b ∈ A it holds that if (a, b) ∈ R then (b, a) /∈ R.

Relation R is antisymmetric if for all a, b ∈ A with a 6= b it holds
that if (a, b) ∈ R then (b, a) /∈ R.

Which of these relations are asymmetric/antisymmetric?

I R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
I R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
I equality relation = on natural numbers

I less-than relation ≤ on natural numbers

I strictly-less-than relation < on natural numbers

How do these properties relate to irreflexivity?
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Transitivity

Definition
A binary relation R over set A is transitive
if it holds for all a, b, c ∈ A that
if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

Which of these relations are transitive?

I R = {(a, a), (a, b), (a, c), (b, a), (c , a), (c , c)} over {a, b, c}
I R = {(a, a), (a, b), (a, c), (b, b), (b, c), (c , c)} over {a, b, c}
I equality relation = on natural numbers

I less-than relation ≤ on natural numbers

I strictly-less-than relation < on natural numbers

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science October 7, 2020 13 / 14



B5. Relations Properties of Binary Relations

Special Classes of Relations

I Some important classes of relations are defined in terms of
these properties.
I Equivalence relation: reflexive, symmetric, transitive
I Partial order: reflexive, antisymmetric, transitive
I Strict order: irreflexive, asymmetric, transitive
I . . .

I We will consider these and other classes in detail.
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