

Discrete Mathematics in Computer Science

B4. Tuples & Cartesian Product

Malte Helmert, Gabriele Röger

University of Basel

October 5, 2020

Discrete Mathematics in Computer Science

October 5, 2020 — B4. Tuples & Cartesian Product

B4.1 Tuples and the Cartesian Product

B4.1 Tuples and the Cartesian Product

Sets vs. Tuples

- ▶ A **set** is an **unordered collection** of **distinct** objects.
- ▶ A **tuple** is an **ordered sequence** of objects.

Tuples

- ▶ ***k*-tuple**: ordered sequence of k objects ($k \in \mathbb{N}_0$)
- ▶ written (o_1, \dots, o_k) or $\langle o_1, \dots, o_k \rangle$
- ▶ unlike sets, **order matters** ($\langle 1, 2 \rangle \neq \langle 2, 1 \rangle$)
- ▶ objects may occur multiple times in a tuple
- ▶ objects contained in tuples are called **components**
- ▶ terminology:
 - ▶ $k = 2$: (ordered) pair
 - ▶ $k = 3$: triple
 - ▶ more rarely: quadruple, quintuple, sextuple, septuple, ...
- ▶ if k is clear from context (or does not matter), often just called **tuple**

Equality of Tuples

Definition (Equality of Tuples)

Two n -tuples $t = \langle o_1, \dots, o_n \rangle$ and $t' = \langle o'_1, \dots, o'_n \rangle$ are **equal** ($t = t'$) if for $i \in \{1, \dots, n\}$ it holds that $o_i = o'_i$.

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_1, \dots, S_n be sets. The **Cartesian product** $S_1 \times \dots \times S_n$ is the following set of n -tuples:

$$S_1 \times \dots \times S_n = \{\langle x_1, \dots, x_n \rangle \mid x_1 \in S_1, x_2 \in S_2, \dots, x_n \in S_n\}.$$

The k -ary **Cartesian power** of a set S (with $k \in \mathbb{N}_1$) is the set $S^k = \{\langle o_1, \dots, o_k \rangle \mid o_i \in S \text{ for all } i \in \{1, \dots, k\}\} = \underbrace{S \times \dots \times S}_{k \text{ times}}$.

René Descartes: French mathematician and philosopher (1596–1650)

Example: $A = \{a, b\}$, $B = \{1, 2, 3\}$

$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$

$$A^2 = \{(a, a), (a, b), (b, a), (b, b)\}$$

(Non-)properties of the Cartesian Product

The Cartesian product is

- ▶ **not commutative**, in most cases $A \times B \neq B \times A$.
- ▶ **not associative**, in most cases $(A \times B) \times C \neq A \times (B \times C)$

Why? Exceptions?