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Countable Sets

We already know:

I The cardinality of N0 is ℵ0.

I All sets with cardinality ℵ0 are called countably infinite.

I A countable set is finite or countably infinite.

I Every subset of a countable set is countable.

I The union of countably many countable sets is countable.

These questions were still open:

I Do all infinite sets have the same cardinality?

I Does the power set of infinite set S
have the same cardinality as S?
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Georg Cantor

I German mathematician (1845–1918)

I Proved that the rational numbers are
countable.

I Proved that the real numbers are not
countable.

I Cantor’s Theorem: For every set S
it holds that |S | < |P(S)|.
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Our Plan

I Understand Cantor’s theorem

I Understand an important theoretical implication
for computer science
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Cantor’s Diagonal Argument Illustrated on a Finite Set

S = {a, b, c}.

Consider an arbitrary injective function from S to P(S).
For example:

a b c

a 1 0 1 a mapped to {a, c}
b 1 1 0 b mapped to {a, b}
c 0 1 0 c mapped to {b}

0 0 1 nothing was mapped to {c}.

We can identify an “unused” element of P(S).
Complement the entries on the main diagonal.

Works with every injective function from S to P(S).
→ there cannot be a bijection from S to P(S).
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Cantor’s Diagonal Argument on a Countably Infinite Set

S = N0.

Consider an arbitrary injective function from N0 to P(N0).
For example:

0 1 2 3 4 . . .
0 1 0 1 0 1 . . .
1 1 1 0 1 0 . . .
2 0 1 0 1 0 . . .
3 1 1 0 0 0 . . .
4 1 1 0 1 1 . . .
...

...
...

...
...

...
. . .

0 0 1 1 0 . . .

Complementing the entries on the main diagonal
again results in an “unused” element of P(N0).
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Cantor’s Theorem

Theorem (Cantor’s Theorem)

For every set S it holds that |S | < |P(S)|.

Proof.
We need to show that

1 There is an injective function from S to P(S).

2 There is no bijection from S to P(S).

For 1, consider function f : S → P(S) with f (x) = {x}. Each
element of S is paired with a unique element of P(S). . . .
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Cantor’s Theorem

Proof (continued).

For 2, we show for every injective function f : S → P(S)
that it is not a bijection from S to P(S).
This is sufficient because every bijection is injective.

Let f be an arbitrary injective function with f : S → P(S).

Consider M = {x | x ∈ S , x /∈ f (x)}.
For every x ∈ S it holds that f (x) 6= M because
x ∈ f (x) iff not x /∈ f (x) iff not x ∈ M iff x /∈ M.

Hence, there is no x ∈ S with f (x) = M. As M ∈ P(S) this
implies that f is not a bijection from S to P(S).
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Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:

I |N0| < |P(N0))| < |P(P(N0)))| < . . .

I |N0| = ℵ0 = i0

I |P(N0)| = i1(= |R|)
I |P(P(N0))| = i2

I . . .
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Existence of Unsolvable Problems

There are more problems in computer science
than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?
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Decision Problems

“Intuitive Definition:” Decision Problem
A decision problem is a Yes-No question of the form
“Does the given input have a certain property?”

I “Does the given binary tree have more than three leaves?”

I “Is the given integer odd?”

I “Given a train schedule, is there a connection from Basel to
Belinzona that takes at most 2.5 hours?”

I Input can be encoded as some finite string.

I Problem can also be represented as the (possibly infinite) set
of all input strings where the answer is “yes”.

I A computer program solves a decision problem if it terminates
on every input and returns the correct answer.
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More Problems than Programs I

I A computer program is given by a finite string.

I A decision problem corresponds to a set of strings.
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More Problems than Programs II

I Consider an arbitrary finite set of symbols (an alphabet) Σ.

I You can think of Σ = {0, 1}
as internally computers operate on binary representation.

I Let S be the set of all finite strings made from symbols in Σ.

I There are at most |S | computer programs with this alphabet.
I There are at least |P(S)| problems with this alphabet.

I every subset of S corresponds to a separate decision problem

I By Cantor’s theorem |S | < |P(S)|,
so there are more problems than programs.
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Summary

I A set is an unordered collection of distinct objects.

I Set operations: union, intersection, set difference, complement

A B A B A B A

I Commutativity, associativity and distributivity
of union and intersection

I De Morgan’s law: A ∪ B = A ∩ B and A ∩ B = A ∪ B.

I The cardinality measures the “size” of a set.
I For finite sets, the cardinality equals the number of elements.
I All sets with the same cardinality as N0 are countably infinite.
I All sets with cardinality ≤ |N0| are countable.

I The power set P(S) of set S is the set of all subsets of S .
I For finite sets S it holds that |P(S)| = 2|S|.
I For all sets S it holds that |S | < |P(S)|.
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