Discrete Mathematics in Computer Science
B1. Sets

Malte Helmert, Gabriele Röger
University of Basel

September 28, 2020
B1.1 Sets

Discrete Mathematics in Computer Science September 28, 2020 - B1. Sets

B1.1 Sets
B1.2 Russell's Paradox
B1.3 Relations on Sets
B1.4 Set Operations
B1.5 Finite Sets

- sets
- relations
- functions
- Specification of sets
- explicit, listing all elements, e.g. $A=\{1,2,3\}$
- implicit with set-builder notation, specifying a property characterizing all elements, e.g. $A=\left\{x \mid x \in \mathbb{N}_{0}\right.$ and $\left.1 \leq x \leq 3\right\}$,

$$
B=\left\{n^{2} \mid n \in \mathbb{N}_{0}\right\}
$$

- implicit, as a sequence with dots, e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- implicit with an inductive definition
- $e \in M: e$ is in set M (an element of the set)
- $e \notin M$: e is not in set M
- empty set $\emptyset=\{ \}$

Question: Is it true that $1 \in\{\{1,2\}, 3\}$?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

B1.2 Russell's Paradox

- Natural numbers $\mathbb{N}_{0}=\{0,1,2, \ldots\}$
- Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Positive integers $\mathbb{Z}_{+}=\mathbb{N}_{1}=\{1,2, \ldots\}$
- Rational numbers $\mathbb{Q}=\left\{n / d \mid n \in \mathbb{Z}, d \in \mathbb{N}_{1}\right\}$
- Real numbers $\mathbb{R}=(-\infty, \infty)$

Why do we use interval notation?
Why didn't we introduce it before?

Barber Paradox
In a town there is only one barber, who is male.

The barber shaves all men in the town, and only those,
who do not shave themselves.
Who shaves the barber?

We can exploit the self-reference to derive a contradiction.

Bertrand Russell

Question

Is the collection of all sets
that do not contain themselves as a member a set?

Is $S=\{M \mid M$ is a set and $M \notin M\}$ a set?

Assume that S is a set
If $S \notin S$ then $S \in S \rightsquigarrow$ Contradiction
If $S \in S$ then $S \notin S \rightsquigarrow$ Contradiction
Hence, there is no such set S.

[^0]
Equality
Eets

Definition (Axiom of Extensionality)
Two sets A and B are equal (written $A=B$)
if every element of A is an element of B and vice versa.
Two sets are equal if they contain the same elements.
We write $A \neq B$ to indicate that A and B are not equal.
Walte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

- $A \subseteq B: A$ is a subset of B,
i. e., every element of A is an element of B
- $A \subset B: A$ is a strict subset of B,

Definition (Power Set)
The power set $\mathcal{P}(S)$ of a set S is the set of all subsets of S.
That is,

$$
\mathcal{P}(S)=\{M \mid M \subseteq S\} .
$$

Example: $\mathcal{P}(\{a, b\})=$
We write $A \nsubseteq B$ to indicate that A is not a subset of B.
i. e., $A \subseteq B$ and $A \neq B$.

- $A \supseteq B: A$ is a superset of B if $B \subseteq A$.
- $A \supset B$: A is a strict superset of B if $B \subset A$.

Analogously: $\not \subset, \nsupseteq, \not \supset$
B1.4 Set Operations

Set Operations

Set operations allow us to express sets in terms of other sets

- intersection $A \cap B=\{x \mid x \in A$ and $x \in B\}$

If $A \cap B=\emptyset$ then A and B are disjoint.

- union $A \cup B=\{x \mid x \in A$ or $x \in B\}$

$$
A \bigcirc B
$$

- set difference $A \backslash B=\{x \mid x \in A$ and $x \notin B\}$
\square
$A \bigcirc B$
- complement $\bar{A}=B \backslash A$, where $A \subseteq B$ and
B is the set of all considered objects (in a given context)

Theorem (Commutativity of \cup and \cap)

For all sets A and B it holds that

- $A \cup B=B \cup A$ and
- $A \cap B=B \cap A$.

Question: Is the set difference also commutative, i. e. is $A \backslash B=B \backslash A$ for all sets A and B ?

Properties of Set Operations: Distributivity
Properties of Set Operations: De Morgan's Law

Augustus De Morgan
British mathematician (1806-1871)
Theorem (Union distributes over intersection and vice versa)
Theorem (Associativity of \cup and \cap) For all sets A, B and C it holds that

- $(A \cup B) \cup C=A \cup(B \cup C)$ and
- $(A \cap B) \cap C=A \cap(B \cap C)$.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science \quad September 28, 2020 18/27 B1. Sets

Set Operations

For all sets A, B and C it holds that

Theorem (De Morgan's Law)
For all sets A and B it holds that

- $\overline{A \cup B}=\bar{A} \cap \bar{B}$ and
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

B1.5 Finite Sets

The cardinality $|S|$ measures the size of set S.
A set is finite if it has a finite number of elements.

Definition (Cardinality)
The cardinality of a finite set is the number of elements it contains

- $|\emptyset|=$
- $\mid\left\{x \mid x \in \mathbb{N}_{0}\right.$ and $\left.2 \leq x<5\right\} \mid=$
- $|\{3,0,\{1,3\}\}|=$

Theorem

For finite sets A and B it holds that $|A \cup B|=|A|+|B|-|A \cap B|$.
Proof sketch
We can construct a subset S^{\prime} by iterating over all elements e of S and deciding whether e becomes a member of S^{\prime} or not.

Corollary

If finite sets A and B are disjoint then $|A \cup B|=|A|+|B|$
We make $|S|$ independent decisions, each between two options
Hence, there are $2^{|S|}$ possible outcomes
Every subset of S can be constructed this way and different choices lead to different sets. Thus, $|\mathcal{P}(S)|=2^{|S|}$.

Cardinality of the Power Set

Let S be a finite set. Then $|\mathcal{P}(S)|=2^{|S|}$.
 Theorem

Alternative Proof by Induction

Enumerating all Subsets

Proof

By induction over $|S|$.
Basis $(|S|=0)$: Then $S=\emptyset$ and $|\mathcal{P}(S)|=|\{\emptyset\}|=1=2^{0}$. IH : For all sets S with $|S|=n$, it holds that $|\mathcal{P}(S)|=2^{|S|}$. Inductive Step $(n \rightarrow n+1)$:
Let S^{\prime} be an arbitrary set with $\left|S^{\prime}\right|=n+1$ and let e be an arbitrary member of S^{\prime}.
Let further $S=S^{\prime} \backslash\{e\}$ and $X=\left\{S^{\prime \prime} \cup\{e\} \mid S^{\prime \prime} \in \mathcal{P}(S)\right\}$. Then $\mathcal{P}\left(S^{\prime}\right)=\mathcal{P}(S) \cup X$. As $\mathcal{P}(S)$ and X are disjoint and $|X|=|\mathcal{P}(S)|$, it holds that $\left|\mathcal{P}\left(S^{\prime}\right)\right|=2|\mathcal{P}(S)|$.
Since $|S|=n$, we can use the IH and get

$$
\left|\mathcal{P}\left(S^{\prime}\right)\right|=2 \cdot 2^{|S|}=2 \cdot 2^{n}=2^{n+1}=2^{\left|S^{\prime}\right|} .
$$

Computer Representation as Bit String

Same representation as in enumeration of all subsets:

- Required: Fixed universe U of possible elements
- Represent sets as bitstrings of length $|U|$
- Associate every bit with one object from the universe
- Each bit is 1 iff the corresponding object is in the set

Example:

- $U=\left\{o_{0}, \ldots, o_{9}\right\}$
- Associate the i-th bit (0 -indexed, from left to right) with o_{i}
- $\left\{o_{2}, O_{4}, O_{5}, o_{9}\right\}$ is represented as:

0010110001

How can the set operations be implemented?

Determine a one-to-one mapping between numbers $0, \ldots, 2^{|S|}-1$ and all subsets of finite set S :

- Consider the binary representation of numbers $0, \ldots, 2^{|S|}-1$.
- Associate every bit with a different element of S.
- Every number is mapped to the set that contains exactly the elements associated with the 1 -bits.

$$
S=\{a, b, c\}
$$

decimal	binary cba	set
0	000	$\}$
1	001	$\{a\}$
2	010	$\{b\}$
3	011	$\{a, b\}$
4	100	$\{c\}$
5	101	$\{a, c\}$
6	110	$\{b, c\}$
7	111	$\{a, b, c\}$

[^0]: September 28, 2020

