

Discrete Mathematics in Computer Science

A3. Proofs II

Malte Helmert, Gabriele Röger

University of Basel

September 23, 2020

Discrete Mathematics in Computer Science

September 23, 2020 — A3. Proofs II

A3.1 Mathematical Induction

A3.2 Structural Induction

A3.1 Mathematical Induction

Proof Techniques

most common proof techniques:

- ▶ direct proof
- ▶ indirect proof (proof by contradiction)
- ▶ contrapositive
- ▶ **mathematical induction**
- ▶ structural induction

Mathematical Induction

Concrete Mathematics by Graham, Knuth and Patashnik (p. 3)

Mathematical induction proves that

we can climb as high as we like on a ladder,
by proving that we can climb onto the bottom rung (the basis)
and that
from each rung we can climb up to the next one (the step).

Propositions

Consider a statement on all natural numbers n with $n \geq m$.

- ▶ E.g. "Every natural number $n \geq 2$ can be written as a product of prime numbers."
 - ▶ $P(2)$: "2 can be written as a product of prime numbers."
 - ▶ $P(3)$: "3 can be written as a product of prime numbers."
 - ▶ $P(4)$: "4 can be written as a product of prime numbers."
 - ▶ ...
 - ▶ $P(n)$: " n can be written as a product of prime numbers."
 - ▶ For every natural number $n \geq 2$ proposition $P(n)$ is true.

A **proposition** $P(n)$ is a mathematical statement that is defined in terms of natural number n .

Mathematical Induction

Mathematical Induction

Proof (of the truth) of proposition $P(n)$
for all natural numbers n with $n \geq m$:

- ▶ **basis**: proof of $P(m)$
- ▶ **induction hypothesis (IH)**:
suppose that $P(k)$ is true for all k with $m \leq k \leq n$
- ▶ **inductive step**: proof of $P(n+1)$
using the induction hypothesis

Mathematical Induction: Example I

Theorem

For all $n \in \mathbb{N}_0$ with $n \geq 1$: $\sum_{k=1}^n (2k - 1) = n^2$

Proof.

Mathematical induction over n :

basis $n = 1$: $\sum_{k=1}^1 (2k - 1) = 2 - 1 = 1 = 1^2$

IH: $\sum_{k=1}^m (2k - 1) = m^2$ for all $1 \leq m \leq n$

inductive step $n \rightarrow n + 1$:

$$\begin{aligned}
 \sum_{k=1}^{n+1} (2k - 1) &= \left(\sum_{k=1}^n (2k - 1) \right) + 2(n+1) - 1 \\
 &\stackrel{\text{IH}}{=} n^2 + 2(n+1) - 1 \\
 &= n^2 + 2n + 1 = (n+1)^2
 \end{aligned}$$

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Proof.

Mathematical Induction over n :

basis $n = 2$: trivially satisfied, since 2 is prime

IH: Every natural number k with $2 \leq k \leq n$ can be written as a product of prime numbers. \dots

Mathematical Induction: Example II

Theorem

Every natural number $n \geq 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \dots \cdot p_m$ with prime numbers p_1, \dots, p_m .

Proof (continued).

inductive step $n \rightarrow n + 1$:

► **Case 1:** $n + 1$ is a prime number \rightsquigarrow trivial

► **Case 2:** $n + 1$ is not a prime number.

There are natural numbers $2 \leq q, r \leq n$ with $n + 1 = q \cdot r$.

Using IH shows that there are prime numbers

q_1, \dots, q_s with $q = q_1 \cdot \dots \cdot q_s$ and

r_1, \dots, r_t with $r = r_1 \cdot \dots \cdot r_t$.

Together this means $n + 1 = q_1 \cdot \dots \cdot q_s \cdot r_1 \cdot \dots \cdot r_t$.

Weak vs. Strong Induction

- **Weak induction:** Induction hypothesis only supposes that $P(k)$ is true for $k = n$
- **Strong induction:** Induction hypothesis supposes that $P(k)$ is true for all $k \in \mathbb{N}_0$ with $m \leq k \leq n$
 - also: **complete induction**

Our previous definition corresponds to **strong induction**.

Which of the examples had also worked with weak induction?

Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction but not with weak induction?

We can always use a stronger proposition:

- “Every $n \in \mathbb{N}_0$ with $n \geq 2$ can be written as a product of prime numbers.”
- $P(n)$: “ n can be written as a product of prime numbers.”
- $P'(n)$: “all $k \in \mathbb{N}_0$ with $2 \leq k \leq n$ can be written as a product of prime numbers.”

Reformulating Statements

It is sometimes convenient to rephrase a statement.

For example:

- ▶ “ $7^n + 3^n$ is divisible by 10 for all odd $n \in \mathbb{N}_0$.”
- ▶ “For all $n \in \mathbb{N}_0$: if n is odd then $7^n + 3^n$ is divisible by 10.”
 - ▶ $P(n)$ = “if n is odd then $7^n + 3^n$ is divisible by 10.”
 - ▶ Need two base cases.
 - ▶ Case distinction (n even or odd) in inductive step
- ▶ “For all $n \in \mathbb{N}_0$: $7^{(2n+1)} + 3^{(2n+1)}$ is divisible by 10.”
 - ▶ $P'(n)$ = “ $7^{(2n+1)} + 3^{(2n+1)}$ is divisible by 10.”

Be careful about how to reformulate a statement!

A3.2 Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- ▶ 0 is a natural number.
- ▶ If n is a natural number, then $n + 1$ is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- ▶ \square is a binary tree (a leaf)
- ▶ If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with inner node \bigcirc).

Implicit statement: all elements of the set can be constructed by finite application of these rules

Inductive Definition of a Set

Inductive Definition

A set M can be defined **inductively** by specifying

- ▶ **basic elements** that are contained in M
- ▶ **construction rules** of the form
“Given some elements of M , another element of M can be constructed like this.”

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- ▶ **basis:** proof of the statement for the basic elements
- ▶ **induction hypothesis (IH):**
suppose that the statement is true for some elements M
- ▶ **inductive step:** proof of the statement for elements constructed by applying a construction rule to M
(one inductive step for each construction rule)

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of **leaves** of a binary tree B , written $\text{leaves}(B)$, is defined as follows:

$$\begin{aligned}\text{leaves}(\square) &= 1 \\ \text{leaves}(\langle L, \bigcirc, R \rangle) &= \text{leaves}(L) + \text{leaves}(R)\end{aligned}$$

Definition (Inner Nodes of a Binary Tree)

The number of **inner nodes** of a binary tree B , written $\text{inner}(B)$, is defined as follows:

$$\begin{aligned}\text{inner}(\square) &= 0 \\ \text{inner}(\langle L, \bigcirc, R \rangle) &= \text{inner}(L) + \text{inner}(R) + 1\end{aligned}$$

Structural Induction: Example (2)

Theorem

For all binary trees B : $\text{inner}(B) = \text{leaves}(B) - 1$.

Proof.

induction basis:

$$\text{inner}(\square) = 0 = 1 - 1 = \text{leaves}(\square) - 1$$

↪ statement is true for base case

...

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree $\langle L, \bigcirc, R \rangle$, we may use that it is true for the subtrees L and R .

inductive step for $B = \langle L, \bigcirc, R \rangle$:

$$\begin{aligned}\text{inner}(B) &= \text{inner}(L) + \text{inner}(R) + 1 \\ &\stackrel{\text{IH}}{=} (\text{leaves}(L) - 1) + (\text{leaves}(R) - 1) + 1 \\ &= \text{leaves}(L) + \text{leaves}(R) - 1 = \text{leaves}(B) - 1\end{aligned}$$

Structural Induction: Exercise

Definition (Height of a Binary Tree)

The **height** of a binary tree B , written $\text{height}(B)$, is defined as follows:

$$\text{height}(\square) = 0$$

$$\text{height}(\langle L, \bigcirc, R \rangle) = \max\{\text{height}(L), \text{height}(R)\} + 1$$

Prove by structural induction:

Theorem

For all binary trees B : $\text{leaves}(B) \leq 2^{\text{height}(B)}$.