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Proof Techniques

most common proof techniques:
> direct proof

indirect proof (proof by contradiction)

| 2

P contrapositive

» mathematical induction
>

structural induction
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Mathematical Induction Propositions

Consider a statement on all natural numbers n with n > m.

» E.g. “Every natural number n > 2 can be written as a product
Concrete Mathematics by Graham, Knuth and Patashnik (p. 3) of prime numbers.”

Mathematical induction proves that > P(2): “2 can be written as a product of prime numbers.”

we can climb as high as we like on a ladder, P(3): "3 can be written as a product of prime numbers.”

. . . P(4): "4 can be written as a product of prime numbers.”
by proving that we can climb onto the bottom rung (the basis)

and that P(n): “n can be written as a product of prime numbers.”

For every natural number n > 2 proposition P(n) is true.

vyvyvyyVvyy

from each rung we can climb up to the next one (the step).

A proposition P(n) is a mathematical statement that is defined in
terms of natural number n.

Malte Helmert, Gabriele Réger (University of Discrete Mathematics in Computer Science September 23, 2020 5/21 Malte Helmert, Gabriele Réger (University of Discrete Mathematics in Computer Science September 23, 2020 6 /21
A3. Proofs Il Mathematical Induction A3. Proofs Il Mathematical Induction
Mathematical Induction Mathematical Induction: Example |
Theorem

For all n € Ng with n > 1: Y"7_,(2k — 1) = n?

Mathematical Induction Proof.

Proof (of the truth) of proposition P(n)

for all natural numbers n with n > m:
> basis: proof of P(m)

» induction hypothesis (IH):

Mathematical induction over n:
basis n=1: Y, (2k—1)=2-1=1=12
IH: 7 2k —1)=m?forallL<m<n

suppose that P(k) is true for all k with m < k <n inductive step n — n + 1:
» inductive step: proof of P(n+ 1) n+1 B n
using the induction hypothesis Zk:l(zk -1)= (Zk:1(2k —1)+2n+1) -1

P +2(n+1)-1
=n?+2n+1=(n+1)?

]
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Mathematical Induction: Example Il

Theorem

Every natural number n > 2 can be written as a product of prime
numbers, i.e. n = p1-p>- ... pm with prime numbers pi, ..., Pm.
Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with 2 < k <n
can be written as a product of prime numbers.
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Mathematical Induction: Example Il

Theorem
Every natural number n > 2 can be written as a product of prime
numbers, i.e. n = p1-p>- ... pm with prime numbers pi, ..., Pm.

Proof (continued).

inductive step n — n+ 1:
> Case 1: n+ 1 is a prime number ~ trivial
» Case 2: n+ 1 is not a prime number.

There are natural numbers 2 < g, r < nwithn+1=gq-r.
Using IH shows that there are prime numbers

g1,...,9s with g =¢q1-...-gs and
My...,ipwithr=r-...-r.
Together this means n+1=q1 ... qs-r-..." It.
L]
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Weak vs. Strong Induction

» Weak induction: Induction hypothesis only supposes
that P(k) is true for k = n

» Strong induction: Induction hypothesis supposes
that P(k) is true for all k € Ng with m < k < n

» also: complete induction

Our previous definition corresponds to strong induction.

Which of the examples had also worked with weak induction?
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Is Strong Induction More Powerful than Weak Induction?

Are there statements that we can prove with strong induction
but not with weak induction?

We can always use a stronger proposition:

» “Every n € Ng with n > 2 can be written as a product of
prime numbers.”

» P(n): “n can be written as a product of prime numbers.”

> P'(n): “all k € Ng with 2 < k < n can be written
as a product of prime numbers.”
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Reformulating Statements

It is sometimes convenient to rephrase a statement.

For example:
> “77 + 3" is divisible by 10 for all odd n € Np."
> “For all n € Ny: if nis odd then 77 + 3" is divisible by 10."
» P(n) = “if nis odd then 7" 4 3" is divisible by 10."
> Need two base cases.
> Case distinction (n even or odd) in inductive step

> “For all n € Ng: 7(2m+1) 4 3(27+1) is divisible by 10.”
> P'(n) = "7+ 4 3(n+1) s divisible by 10.”

Be careful about how to reformulate a statement!
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Inductively Defined Sets: Examples

Example (Natural Numbers)
The set Ng of natural numbers is inductively defined as follows:

» 0 is a natural number.

» If nis a natural number, then n+ 1 is a natural number.

Example (Binary Tree)
The set B of binary trees is inductively defined as follows:

» [is a binary tree (a leaf)
» If L and R are binary trees, then (L, (O, R) is a binary tree
(with inner node Q).

Implicit statement: all elements of the set can be constructed
by finite application of these rules
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Inductive Definition of a Set

Inductive Definition
A set M can be defined inductively by specifying

» basic elements that are contained in M

» construction rules of the form
“Given some elements of M, another element of M
can be constructed like this.”

Malte Helmert, Gabriele Roger (University of Discrete Mathematics in Computer Science September 23, 2020 16

A3. Proofs Il Structural Induction

/ 21




A3. Proofs Il Structural Induction

Structural Induction

Structural Induction
Proof of statement for all elements of an inductively defined set

P basis: proof of the statement for the basic elements

» induction hypothesis (IH):
suppose that the statement is true for some elements M

> inductive step: proof of the statement for elements
constructed by applying a construction rule to M
(one inductive step for each construction rule)
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Structural Induction: Example (1)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written /eaves(B),
is defined as follows:

leaves(O)) =1
leaves({L, O, R)) = leaves(L) + leaves(R)

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B),
is defined as follows:

inner(dJ) = 0
inner({L, O, R)) = inner(L) + inner(R) + 1
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Structural Induction: Example (2)

Theorem
For all binary trees B: inner(B) = leaves(B) — 1.

Proof.
induction basis:
inner(0) =0=1—1 = leaves((J) — 1

~~ statement is true for base case
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Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree (L, O, R),
we may use that it is true for the subtrees L and R.

inductive step for B = (L,(O, R):

inner(B) = inner(L) + inner(R) + 1

H (leaves(L) — 1) + (leaves(R) — 1) + 1

= leaves(L) + leaves(R) — 1 = leaves(B) — 1

O
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Structural Induction: Exercise

Definition (Height of a Binary Tree)
The height of a binary tree B, written height(B),
is defined as follows:

height(d) =0
height({L, O, R)) = max{height(L), height(R)} + 1

Prove by structural induction:

Theorem
For all binary trees B: leaves(B) < 2height(B)_
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