

Discrete Mathematics in Computer Science

A2. Proofs I

Malte Helmert, Gabriele Röger

University of Basel

September 21, 2020

Discrete Mathematics in Computer Science

September 21, 2020 — A2. Proofs I

A2.1 What is a Proof?

A2.2 Proof Strategies

A2.3 Direct Proof

A2.4 Indirect Proof

A2.5 Proof by Contrapositive

A2.6 Excursus: Computer-assisted Theorem Proving

A2.1 What is a Proof?

What is a Proof?

A **mathematical proof** is

- ▶ a sequence of logical steps
- ▶ starting with one set of statements
- ▶ that comes to the conclusion
that some statement must be true.

What is a **statement**?

Mathematical Statements

Mathematical Statement

A **mathematical statement** consists of a set of **preconditions** and a set of **conclusions**.

The statement is **true** if the conclusions are true whenever the preconditions are true.

Notes:

- ▶ set of preconditions is sometimes empty
- ▶ often, “assumptions” is used instead of “preconditions”; slightly unfortunate because “assumption” is also used with another meaning (↔ cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- ▶ “Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd.”
- ▶ “There exists an even prime number.”
- ▶ “Let $p \in \mathbb{N}_0$ with $p \geq 3$ be a prime number. Then p is odd.”
- ▶ “All prime numbers $p \geq 3$ are odd.”
- ▶ “For all sets $A, B, C: A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ ”
- ▶ “0 is a natural number.”
- ▶ “The equation $a^k + b^k = c^k$ has infinitely many solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \geq 2$.”
- ▶ “The equation $a^k + b^k = c^k$ has no solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \geq 3$.”

What are the preconditions, what are the conclusions?

On what Statements can we Build the Proof?

A mathematical proof is

- ▶ a sequence of logical steps
- ▶ **starting with one set of statements**
- ▶ that comes to the conclusion that some statement must be true.

We can use:

- ▶ **axioms**: statements that are assumed to always be true in the current context
- ▶ **theorems** and **lemmas**: statements that were already proven
 - ▶ lemma: an intermediate tool
 - ▶ theorem: itself a relevant result
- ▶ **premises**: assumptions we make to see what consequences they have

What is a Logical Step?

A mathematical proof is

- ▶ **a sequence of logical steps**
- ▶ starting with one set of statements
- ▶ that comes to the conclusion that some statement must be true.

Each step **directly follows**

- ▶ from the axioms,
- ▶ premises,
- ▶ previously proven statements and
- ▶ the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

The Role of Definitions

Definition

A **set** is an unordered collection of distinct objects.

The set that does not contain any objects is the **empty set** \emptyset .

- ▶ A definition introduces an abbreviation.
- ▶ Whenever we say “set”, we could instead say “an unordered collection of distinct objects” and vice versa.
- ▶ Definitions can also introduce notation.

Disproofs

- ▶ A **disproof** (**refutation**) shows that a given mathematical statement is **false** by giving an example where the preconditions are true, but the conclusion is false.
- ▶ This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.
- ▶ Formally, disproofs are proofs of modified (“negated”) statements.
- ▶ Be careful about how to negate a statement!

A Word on Style

A proof should help the reader to see why the result must be true.

- ▶ A proof should be easy to follow.
- ▶ Omit unnecessary information.
- ▶ Move self-contained parts into separate lemmas.
- ▶ In complicated proofs, reveal the overall structure in advance.
- ▶ Have a clear line of argument.

→ Writing a proof is like writing an essay.

A2.2 Proof Strategies

Common Forms of Statements

Many statements have one of these forms:

- ① "All $x \in S$ with the property P also have the property Q ."
- ② " A is a subset of B ."
- ③ "For all $x \in S$: x has property P iff x has property Q ."
- ④ " $A = B$ ", where A and B are sets.

In the following, we will discuss some typical proof/disproof strategies for such statements.

Proof Strategies

- ① "All $x \in S$ with the property P also have the property Q ."
"For all $x \in S$: if x has property P , then x has property Q ."
 - ▶ To prove, assume you are given an arbitrary $x \in S$ that has the property P .
Give a sequence of proof steps showing that x must have the property Q .
 - ▶ To disprove, find a **counterexample**, i. e., find an $x \in S$ that has property P but not Q and prove this.

Proof Strategies

- ② " A is a subset of B ."

- ▶ To prove, assume you have an arbitrary element $x \in A$ and prove that $x \in B$.
- ▶ To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

Proof Strategies

- ③ "For all $x \in S$: x has property P **iff** x has property Q ."
("iff": "if and only if")
 - ▶ To prove, separately prove "if P then Q " and "if Q then P ".
 - ▶ To disprove, disprove "if P then Q " or disprove "if Q then P ".

Proof Strategies

4 “ $A = B$ ”, where A and B are sets.

- ▶ To prove, separately prove “ $A \subseteq B$ ” and “ $B \subseteq A$ ”.
- ▶ To disprove, disprove “ $A \subseteq B$ ” or disprove “ $B \subseteq A$ ”.

Proof Techniques

most common proof techniques:

- ▶ direct proof
- ▶ indirect proof (proof by contradiction)
- ▶ contrapositive
- ▶ mathematical induction
- ▶ structural induction

A2.3 Direct Proof

Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

Direct Proof: Example

→ Separate $\text{\LaTeX}/\text{PDF}$ file

A2.4 Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- ▶ Make an **assumption** that the statement is false.
- ▶ Derive a **contradiction** from the assumption together with the preconditions of the statement.
- ▶ This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

Indirect Proof: Example

→ Separate $\text{\LaTeX}/\text{PDF}$ file

A2.5 Proof by Contrapositive

Contrapositive

(Proof by) Contrapositive

Prove "If A , then B " by proving "If not B , then not A ."

Examples:

- ▶ Prove "For all $n \in \mathbb{N}_0$: if n^2 is odd, then n is odd" by proving "For all $n \in \mathbb{N}_0$, if n is even, then n^2 is even."
- ▶ Prove "For all $n \in \mathbb{N}_0$: if n is not a square number, then \sqrt{n} is irrational" by proving "For all $n \in \mathbb{N}_0$: if \sqrt{n} is rational, then n is a square number."

Contrapositive: Example

→ Separate $\text{\LaTeX}/\text{PDF}$ file

A2.6 Excursus: Computer-assisted Theorem Proving

Computer-assisted Proofs

- ▶ Computers can help proving theorems.
- ▶ Computer-aided proofs have for example been used for proving theorems by exhaustion.
- ▶ Example: Four color theorem

Interactive Theorem Proving

- ▶ On the lowest abstraction level, rigorous mathematical proofs rely on formal logic.
- ▶ On this level, proofs can be automatically verified by computers.
- ▶ Nobody wants to write or read proofs on this level of detail.
- ▶ In Interactive Theorem Proving a human guides the proof and the computer tries to fill in the details.
- ▶ If it succeeds, we can be very confident that the proof is valid.
- ▶ Example theorem provers: Isabelle/HOL, Lean