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A2. Proofs I What is a Proof?

A2.1 What is a Proof?
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A2. Proofs I What is a Proof?

What is a Proof?

A mathematical proof is

I a sequence of logical steps

I starting with one set of statements

I that comes to the conlusion
that some statement must be true.

What is a statement?
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A2. Proofs I What is a Proof?

Mathematical Statements

Mathematical Statement
A mathematical statement consists of a set of preconditions
and a set of conclusions.

The statement is true if the conclusions are true
whenever the preconditions are true.

Notes:

I set of preconditions is sometimes empty

I often, “assumptions” is used instead of “preconditions”;
slightly unfortunate because “assumption”
is also used with another meaning ( cf. indirect proofs)
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A2. Proofs I What is a Proof?

Examples of Mathematical Statements

Examples (some true, some false):

I “Let p ∈ N0 be a prime number. Then p is odd.”

I “There exists an even prime number.”

I “Let p ∈ N0 with p ≥ 3 be a prime number. Then p is odd.”

I “All prime numbers p ≥ 3 are odd.”

I “For all sets A, B, C : A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )”

I “0 is a natural number.”

I “The equation ak + bk = ck has infinitely many solutions
with a, b, c , k ∈ N1 and k ≥ 2.”

I “The equation ak + bk = ck has no solutions
with a, b, c , k ∈ N1 and k ≥ 3.”

What are the preconditions, what are the conclusions?
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A2. Proofs I What is a Proof?

On what Statements can we Build the Proof?

A mathematical proof is

I a sequence of logical steps

I starting with one set of statements

I that comes to the conlusion
that some statement must be true.

We can use:

I axioms: statements that are assumed to always be true
in the current context

I theorems and lemmas: statements that were already proven
I lemma: an intermediate tool
I theorem: itself a relevant result

I premises: assumptions we make
to see what consequences they have
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A2. Proofs I What is a Proof?

What is a Logical Step?

A mathematical proof is

I a sequence of logical steps

I starting with one set of statements

I that comes to the conlusion
that some statement must be true.

Each step directly follows

I from the axioms,

I premises,

I previously proven statements and

I the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.
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A2. Proofs I What is a Proof?

The Role of Definitions

Definition
A set is an unordered collection of distinct objects.
The set that does not contain any objects is the empty set ∅.

I A definition introduces an abbreviation.

I Whenever we say “set”, we could instead say “an unordered
collection of distinct objects” and vice versa.

I Definitions can also introduce notation.
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A2. Proofs I What is a Proof?

Disproofs

I A disproof (refutation) shows that a given mathematical
statement is false by giving an example
where the preconditions are true, but the conclusion is false.

I This requires deriving, in a sequence of proof steps,
the opposite (negation) of the conclusion.

I Formally, disproofs are proofs of modified
(“negated”) statements.

I Be careful about how to negate a statement!
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A2. Proofs I What is a Proof?

A Word on Style

A proof should help the reader to see why the result must be true.

I A proof should be easy to follow.

I Omit unnecessary information.

I Move self-contained parts into separate lemmas.

I In complicated proofs, reveal the overall structure in advance.

I Have a clear line of argument.

→ Writing a proof is like writing an essay.
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A2.2 Proof Strategies
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A2. Proofs I Proof Strategies

Common Forms of Statements

Many statements have one of these forms:

1 “All x ∈ S with the property P also have the property Q.”

2 “A is a subset of B.”

3 “For all x ∈ S : x has property P iff x has property Q.”

4 “A = B”, where A and B are sets.

In the following, we will discuss some typical proof/disproof
strategies for such statements.
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A2. Proofs I Proof Strategies

Proof Strategies

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”
I To prove, assume you are given an arbitrary x ∈ S

that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.

I To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.
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A2. Proofs I Proof Strategies

Proof Strategies

2 “A is a subset of B.”
I To prove, assume you have an arbitrary element x ∈ A

and prove that x ∈ B.
I To disprove, find an element in x ∈ A \ B

and prove that x ∈ A \ B.
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A2. Proofs I Proof Strategies

Proof Strategies

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)
I To prove, separately prove “if P then Q” and “if Q then P”.
I To disprove, disprove “if P then Q” or disprove “if Q then P”.
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A2. Proofs I Proof Strategies

Proof Strategies

4 “A = B”, where A and B are sets.
I To prove, separately prove “A ⊆ B” and “B ⊆ A”.
I To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.
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A2. Proofs I Proof Strategies

Proof Techniques

most common proof techniques:

I direct proof

I indirect proof (proof by contradiction)

I contrapositive

I mathematical induction

I structural induction
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A2. Proofs I Direct Proof

A2.3 Direct Proof
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A2. Proofs I Direct Proof

Direct Proof

Direct Proof
Direct derivation of the statement by deducing or rewriting.
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A2. Proofs I Direct Proof

Direct Proof: Example

→ Separate LATEX/PDF file
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A2. Proofs I Indirect Proof

A2.4 Indirect Proof
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A2. Proofs I Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)
I Make an assumption that the statement is false.

I Derive a contradiction from the assumption
together with the preconditions of the statement.

I This shows that the assumption must be false
given the preconditions of the statement,
and hence the original statement must be true.
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A2. Proofs I Indirect Proof

Indirect Proof: Example

→ Separate LATEX/PDF file
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A2. Proofs I Proof by Contrapositive

A2.5 Proof by Contrapositive
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A2. Proofs I Proof by Contrapositive

Contrapositive

(Proof by) Contrapositive

Prove “If A, then B” by proving “If not B, then not A.”

Examples:

I Prove “For all n ∈ N0: if n2 is odd, then n is odd”
by proving “For all n ∈ N0, if n is even, then n2 is even.”

I Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”
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A2. Proofs I Proof by Contrapositive

Contrapositive: Example

→ Separate LATEX/PDF file
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A2.6 Excursus: Computer-assisted
Theorem Proving
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A2. Proofs I Excursus: Computer-assisted Theorem Proving

Computer-assisted Proofs

I Computers can help proving theorems.

I Computer-aided proofs have for example been used for
proving theorems by exhaustion.

I Example: Four color theorem
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A2. Proofs I Excursus: Computer-assisted Theorem Proving

Interactive Theorem Proving

I On the lowest abstraction level, rigorous mathematical proofs
rely on formal logic.

I On this level, proofs can be automatically verified by
computers.

I Nobody wants to write or read proofs on this level of detail.

I In Interactive Theorem Proving a human guides the proof and
the computer tries to fill in the details.

I If it succeeds, we can be very confident that the proof is valid.

I Example theorem provers: Isabelle/HOL, Lean
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