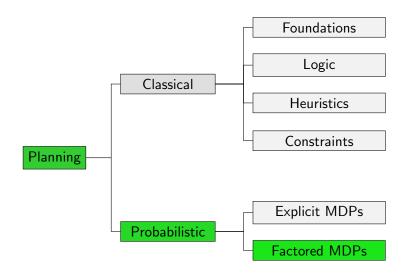
Planning and Optimization G8. Monte-Carlo Tree Search Algorithms (Part II)

Malte Helmert and Thomas Keller

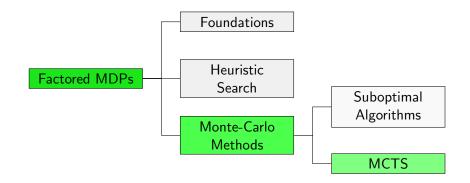
Universität Basel

December 16, 2019

Content of this Course



Content of this Course: Factored MDPs



ε -greedy	/
-----------------------	---

ε -greedy	UCB1	
00000		

ε-greedy 0●000	UCB1 000000000	

ε -greedy: Idea

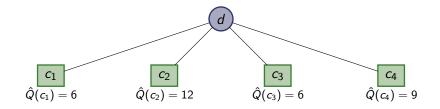
- \blacksquare tree policy parametrized with constant parameter ε
- with probability 1ε , pick one of the greedy actions uniformly at random
- otherwise, pick non-greedy successor uniformly at random

ε -greedy Tree Policy

$$\pi(a \mid d) = egin{cases} rac{1-\epsilon}{|L^k_\star(d)|} & ext{if } a \in L^k_\star(d) \ rac{\epsilon}{|L(d(s)) \setminus L^k_\star(d)|} & ext{otherwise,} \end{cases}$$

with $L^k_\star(d) = \{a(c) \in L(s(d)) \mid c \in \arg\min_{c' \in \text{children}(d)} \hat{Q}^k(c')\}.$

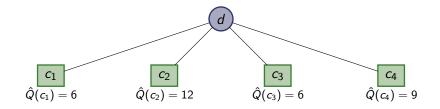
ε -greedy: Example



Assuming $a(c_i) = a_i$ and $\varepsilon = 0.2$, we get:

 $\pi(a_1 \mid d) = \pi(a_3 \mid d) = \pi(a_3 \mid d) = \pi(a_2 \mid d) = \pi(a_4 \mid d) = \pi($

ε -greedy: Example



Assuming $a(c_i) = a_i$ and $\varepsilon = 0.2$, we get:

 $\pi(a_1 \mid d) = 0.4 \qquad \pi(a_3 \mid d) = 0.4$ $\pi(a_2 \mid d) = 0.1 \qquad \pi(a_4 \mid d) = 0.1$

ε-greedy Softmax	UCB1	
00000 00000	00000000	00

ε -greedy: Asymptotic Optimality

Asymptotic Optimality of ε -greedy

- explores forever
- not greedy in the limit
- $\rightsquigarrow\,$ not asymptotically optimal

ε -greedy		UCB1	
00000	00000	00000000	00

ε -greedy: Asymptotic Optimality

Asymptotic Optimality of $\varepsilon\text{-greedy}$

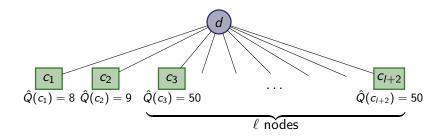
- explores forever
- not greedy in the limit
- $\rightsquigarrow\,$ not asymptotically optimal

asymptotically optimal variant uses decaying ε , e.g. $\varepsilon = \frac{1}{k}$

ε -greedy: Weakness

Problem:

when ε -greedy explores, all non-greedy actions are treated equally

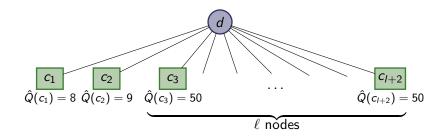


Assuming $a(c_i) = a_i$, $\varepsilon = 0.2$ and $\ell = 9$, we get:

ε -greedy: Weakness

Problem:

when ε -greedy explores, all non-greedy actions are treated equally



Assuming $a(c_i) = a_i$, $\varepsilon = 0.2$ and $\ell = 9$, we get: $\pi(a_1 \mid d) = 0.8$ $\pi(a_2 \mid d) = \pi(a_3 \mid d) = \dots = \pi(a_{11} \mid d) = 0.02$

ε -greedy	Softmax	UCB1	
	00000		

Softmax

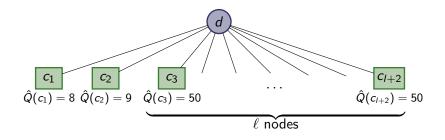
<i>ε</i> -greedy	Softmax	UCB1	Summary
00000	0●000	000000000	00
Softmax: Idea			

- tree policy with constant parameter au
- select actions proportionally to their action-value estimate
- most popular softmax tree policy uses Boltzmann exploration
- \blacksquare \Rightarrow selects actions proportionally to $e^{\frac{-\hat{Q}_k(c)}{\tau}}$

Tree Policy based on Boltzmann Exploration

$$\pi(a(c) \mid d) = rac{e^{rac{-\hat{Q}_k(c)}{ au}}}{\sum_{c' \in \mathsf{children}(d)} e^{rac{-\hat{Q}_k(c')}{ au}}}$$

Softmax: Example



Assuming
$$a(c_i) = a_i$$
, $\tau = 10$ and $\ell = 9$, we get:
 $\pi(a_1 \mid d) = 0.49$
 $\pi(a_2 \mid d) = 0.45$
 $\pi(a_3 \mid d) = \ldots = \pi(a_{11} \mid d) = 0.007$

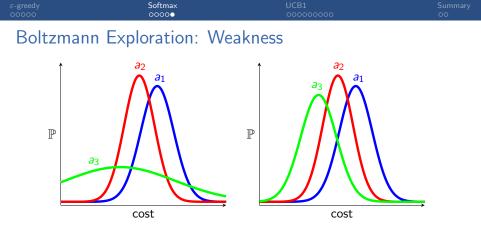
Boltzmann Exploration: Asymptotic Optimality

Asymptotic Optimality of Boltzmann Exploration

- explores forever
- not greedy in the limit:
 - state- and action-value estimates converge to finite values
 - therefore, probabilities also converge to positive, finite values

→ not asymptotically optimal

asymptotically optimal variant uses decaying τ , e.g. $\tau = \frac{1}{\log k}$ careful: τ must not decay faster than logarithmically (i.e., must have $\tau \ge \frac{\text{const}}{\log k}$) to explore infinitely



- Boltzmann exploration and ε-greedy only consider mean of sampled action-values
- as we sample the same node many times, we can also gather information about variance (how reliable the information is)
- Boltzmann exploration ignores the variance, treating the two scenarios equally

	UCB1	
	0000000	

UCB1

<i>ε</i> -greedy 00000	UCB1 00000000	

Upper Confidence Bounds: Idea

Balance exploration and exploitation by preferring actions that

- have been successful in earlier iterations (exploit)
- have been selected rarely (explore)

<i>ε</i> -greedy 00000	UCB1 00000000	

Upper Confidence Bounds: Idea

- select successor c of d that minimizes $\hat{Q}^k(c) E^k(d) \cdot B^k(c)$
 - based on action-value estimate $\hat{Q}^k(c)$,
 - exploration factor $E^k(d)$ and
 - bonus term $B^k(c)$.
- select $B^k(c)$ such that $Q_*(s(c), a(c)) \leq \hat{Q}^k(c) - E^k(d) \cdot B^k(c)$ with high probability
- Idea: $\hat{Q}^k(c) E^k(d) \cdot B^k(c)$ is a lower confidence bound on $Q_{\star}(s(c), a(c))$ under the collected information

ε -greedy	UCB1	
	0000000	

Bonus Term of UCB1

• use
$$B^k(c) = \sqrt{\frac{2 \cdot \ln N^k(d)}{N^k(c)}}$$
 as bonus term

- bonus term is derived from Chernoff-Hoeffding bound:
 - gives the probability that a sampled value (here: $\hat{Q}^k(c)$)
 - is far from its true expected value (here: $Q_{\star}(s(c), a(c))$)
 - in dependence of the number of samples (here: $N^k(c)$)
- picks the optimal action exponentially more often
- concrete MCTS algorithm that uses UCB1 is called UCT

ε -greedy	UCB1	
	00000000	

Exploration Factor (1)

Exploration factor $E^{k}(d)$ serves two roles in SSPs:

■ UCB1 designed for MAB with reward in [0,1] $\Rightarrow \hat{Q}^{k}(c) \in [0;1]$ for all k and c

• bonus term
$$B^k(c) = \sqrt{rac{2 \cdot \ln N^k(d)}{N^k(c)}}$$
 always ≥ 0

when d is visited,

• if $B^k(c) \ge 2$ for some c, UCB1 must explore

• hence, $\hat{Q}^k(c)$ and $B^k(c)$ are always of similar size

 \Rightarrow set $E^k(d)$ to a value that depends on $\hat{V}^k(d)$

00000 00000 00000 00	ε -greedy	UCB1	
		00000000	

Exploration Factor (2)

Exploration factor $E^{k}(d)$ serves two roles in SSPs:

- E^k(d) allows to adjust balance between exploration and exploitation
- search with $E^k(d) = \hat{V}^k(d)$ very greedy
- in practice, $E^k(d)$ is often multiplied with constant > 1
- UCB1 often requires hand-tailored $E^k(d)$ to work well

ε -greedy	UCB1	
	000000000	

Asymptotic Optimality

Asymptotic Optimality of UCB1

- explores forever
- greedy in the limit
- \rightsquigarrow asymptotically optimal

ε -greedy	UCB1	
	000000000	

Asymptotic Optimality

Asymptotic Optimality of UCB1

- explores forever
- greedy in the limit
- \rightsquigarrow asymptotically optimal

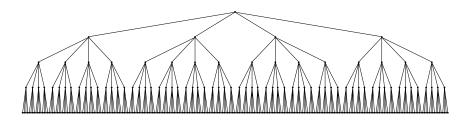
However:

- no theoretical justification to use UCB1 for SSPs/MDPs (MAB proof requires stationary rewards)
- development of tree policies active research topic

<i>ε</i> -greedy 00000	UCB1 000000000	

Symmetric Search Tree up to depth 4

full tree up to depth 4



<i>ε</i> -greedy 00000	UCB1 00000000	

Asymmetric Search Tree of UCB1

(equal number of search nodes)



	UCB1	Summary
		0

Summary

ε-greedy	UCB1	Summary
00000	000000000	○●

Summary

- ε-greedy, Boltzmann exploration and UCB1 balance exploration and exploitation
- ε -greedy selects greedy action with probability 1ε and another action uniformly at random otherwise
- ε -greedy selects non-greedy actions with same probability
- Boltzmann exploration selects each action proportional to its action-value estimate
- Boltzmann exploration does not take confidence of estimate into account
- UCB1 selects actions greedily w.r.t. upper confidence bound on action-value estimate