
Planning and Optimization
G8. Monte-Carlo Tree Search Algorithms (Part II)

Malte Helmert and Thomas Keller

Universität Basel

December 16, 2019

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 1 / 25

Planning and Optimization
December 16, 2019 — G8. Monte-Carlo Tree Search Algorithms (Part II)

G8.1 ε-greedy

G8.2 Softmax

G8.3 UCB1

G8.4 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 2 / 25

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 3 / 25

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

Monte-Carlo
Methods

Suboptimal
Algorithms

MCTS

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 4 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) ε-greedy

G8.1 ε-greedy

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 5 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) ε-greedy

ε-greedy: Idea

I tree policy parametrized with constant parameter ε

I with probability 1− ε, pick one of the greedy actions
uniformly at random

I otherwise, pick non-greedy successor uniformly at random

ε-greedy Tree Policy

π(a | d) =

{
1−ε
|Lk?(d)|

if a ∈ Lk?(d)
ε

|L(d(s))\Lk?(d)|
otherwise,

with Lk?(d) = {a(c) ∈ L(s(d)) | c ∈ arg minc ′∈children(d) Q̂
k(c ′)}.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 6 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) ε-greedy

ε-greedy: Example

d

c1

Q̂(c1) = 6

c2

Q̂(c2) = 12

c3

Q̂(c3) = 6

c4

Q̂(c4) = 9

Assuming a(ci) = ai and ε = 0.2, we get:

I π(a1 | d) = 0.4

I π(a2 | d) = 0.1

I π(a3 | d) = 0.4

I π(a4 | d) = 0.1

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 7 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) ε-greedy

ε-greedy: Asymptotic Optimality

Asymptotic Optimality of ε-greedy
I explores forever

I not greedy in the limit

 not asymptotically optimal

asymptotically optimal variant uses decaying ε, e.g. ε = 1
k

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 8 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) ε-greedy

ε-greedy: Weakness

Problem:
when ε-greedy explores, all non-greedy actions are treated equally

d

c1

Q̂(c1) = 8

c2

Q̂(c2) = 9

c3

Q̂(c3) = 50
. . .

cl+2

Q̂(cl+2) = 50
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸

` nodes

Assuming a(ci) = ai , ε = 0.2 and ` = 9, we get:

I π(a1 | d) = 0.8

I π(a2 | d) = π(a3 | d) = · · · = π(a11 | d) = 0.02

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 9 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Softmax

G8.2 Softmax

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 10 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Softmax

Softmax: Idea

I tree policy with constant parameter τ

I select actions proportionally to their action-value estimate

I most popular softmax tree policy uses Boltzmann exploration

I ⇒ selects actions proportionally to e
−Q̂k (c)

τ

Tree Policy based on Boltzmann Exploration

π(a(c) | d) =
e
−Q̂k (c)

τ∑
c ′∈children(d) e

−Q̂k (c
′)

τ

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 11 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Softmax

Softmax: Example

d

c1

Q̂(c1) = 8

c2

Q̂(c2) = 9

c3

Q̂(c3) = 50
. . .

cl+2

Q̂(cl+2) = 50
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸

` nodes

Assuming a(ci) = ai , τ = 10 and ` = 9, we get:

I π(a1 | d) = 0.49

I π(a2 | d) = 0.45

I π(a3 | d) = . . . = π(a11 | d) = 0.007

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 12 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Softmax

Boltzmann Exploration: Asymptotic Optimality

Asymptotic Optimality of Boltzmann Exploration
I explores forever
I not greedy in the limit:

I state- and action-value estimates converge to finite values
I therefore, probabilities also converge to positive, finite values

 not asymptotically optimal

asymptotically optimal variant uses decaying τ , e.g. τ = 1
log k

careful: τ must not decay faster than logarithmically

careful:

(i.e., must have τ ≥ const
log k) to explore infinitely

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 13 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Softmax

Boltzmann Exploration: Weakness

a1
a2

a3

cost

P

a1
a2

a3

cost

P

I Boltzmann exploration and ε-greedy only
consider mean of sampled action-values

I as we sample the same node many times, we can also gather
information about variance (how reliable the information is)

I Boltzmann exploration ignores the variance,
treating the two scenarios equally

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 14 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

G8.3 UCB1

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 15 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Upper Confidence Bounds: Idea

Balance exploration and exploitation by preferring actions that

I have been successful in earlier iterations (exploit)

I have been selected rarely (explore)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 16 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Upper Confidence Bounds: Idea

I select successor c of d that minimizes Q̂k(c)− E k(d) · Bk(c)
I based on action-value estimate Q̂k(c),
I exploration factor E k(d) and
I bonus term Bk(c).

I select Bk(c) such that
Q?(s(c), a(c)) ≤ Q̂k(c)− E k(d) · Bk(c)
with high probability

I Idea: Q̂k(c)− E k(d) · Bk(c) is a lower confidence bound
on Q?(s(c), a(c)) under the collected information

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 17 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Bonus Term of UCB1

I use Bk(c) =
√

2·lnNk (d)
Nk (c)

as bonus term

I bonus term is derived from Chernoff-Hoeffding bound:
I gives the probability that a sampled value (here: Q̂k(c))
I is far from its true expected value (here: Q?(s(c), a(c)))
I in dependence of the number of samples (here: Nk(c))

I picks the optimal action exponentially more often

I concrete MCTS algorithm that uses UCB1 is called UCT

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 18 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Exploration Factor (1)

Exploration factor E k(d) serves two roles in SSPs:

I UCB1 designed for MAB with reward in [0, 1]
⇒ Q̂k(c) ∈ [0; 1] for all k and c

I bonus term Bk(c) =
√

2·lnNk (d)
Nk (c)

always ≥ 0

I when d is visited,
I Bk+1(c) > Bk(c) if a(c) is not selected
I Bk+1(c) < Bk(c) if a(c) is selected

I if Bk(c) ≥ 2 for some c , UCB1 must explore

I hence, Q̂k(c) and Bk(c) are always of similar size

⇒ set E k(d) to a value that depends on V̂ k(d)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 19 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Exploration Factor (2)

Exploration factor E k(d) serves two roles in SSPs:

I E k(d) allows to adjust balance
between exploration and exploitation

I search with E k(d) = V̂ k(d) very greedy

I in practice, E k(d) is often multiplied with constant > 1

I UCB1 often requires hand-tailored E k(d) to work well

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 20 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Asymptotic Optimality

Asymptotic Optimality of UCB1
I explores forever

I greedy in the limit

 asymptotically optimal

However:

I no theoretical justification to use UCB1 for SSPs/MDPs
(MAB proof requires stationary rewards)

I development of tree policies active research topic

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 21 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Symmetric Search Tree up to depth 4

full tree up to depth 4

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 22 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) UCB1

Asymmetric Search Tree of UCB1

(equal number of search nodes)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 23 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Summary

G8.4 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 24 / 25

G8. Monte-Carlo Tree Search Algorithms (Part II) Summary

Summary

I ε-greedy, Boltzmann exploration and UCB1 balance
exploration and exploitation

I ε-greedy selects greedy action with probability 1− ε
and another action uniformly at random otherwise

I ε-greedy selects non-greedy actions with same probability

I Boltzmann exploration selects each action proportional to its
action-value estimate

I Boltzmann exploration does not take confidence of estimate
into account

I UCB1 selects actions greedily w.r.t. upper confidence bound
on action-value estimate

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 25 / 25

	-greedy
	Softmax
	UCB1
	Summary

