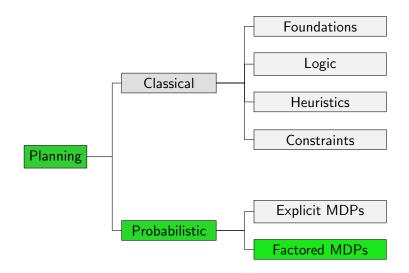
Planning and Optimization G7. Monte-Carlo Tree Search Algorithms (Part I)

Malte Helmert and Thomas Keller

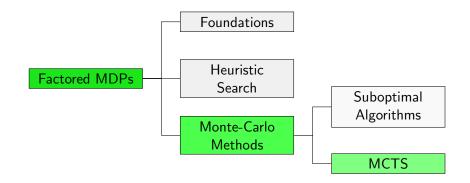
Universität Basel

December 16, 2019

Content of this Course



Content of this Course: Factored MDPs

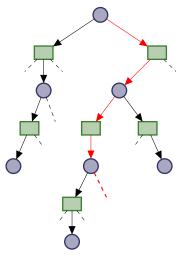


Introduction	Optimality	Summary
00000		00

Introduction

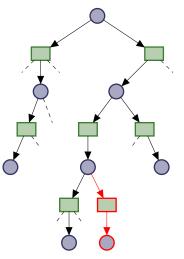
Performs iterations with 4 phases:

selection: use given tree policy to traverse explicated tree



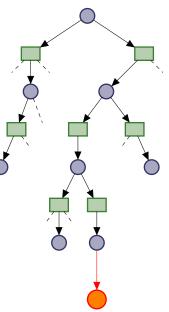
Performs iterations with 4 phases:

- selection: use given tree policy to traverse explicated tree
- expansion: add node(s) to the tree



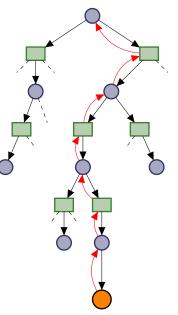
Performs iterations with 4 phases:

- selection: use given tree policy to traverse explicated tree
- expansion: add node(s) to the tree
- simulation: use given default policy to simulate run



Performs iterations with 4 phases:

- selection: use given tree policy to traverse explicated tree
- expansion: add node(s) to the tree
- simulation: use given default policy to simulate run
- backpropagation: update visited nodes with Monte-Carlo backups



Introduction	Default Policy	Optimality	MAB	Summary
00●00	0000000	0000000	00000	00
Motivation				

- Monte-Carlo Tree Search is a framework of algorithms
- concrete MCTS algorithms are specified in terms of
 - a tree policy;
 - and a default policy
- for most tasks, a well-suited MCTS configuration exists
- but for each task, many MCTS configurations perform poorly
- and every MCTS configuration that works well in one problem performs poorly in another problem
- \Rightarrow There is no "Swiss army knife" configuration for MCTS

Introduction	Default Policy	Optimality	MAB	Summary
00000	0000000	0000000	00000	00
Role of T	ree Policy			

5

- used to traverse explicated tree from root node to a leaf
- maps decision nodes to a probability distribution over actions (usually as a function over a decision node and its children)
- exploits information from search tree
 - able to learn over time
 - requires MCTS tree to memorize collected information

Introduction 00000	Default Policy 0000000	Optimality 0000000	

Role of Default Policy

- used to simulate run from some state to a goal
- maps states to a probability distribution over actions
- independent from MCTS tree
 - does not improve over time
 - can be computed quickly
 - constant memory requirements
- accumulated cost of simulated run used to initialize state-value estimate of decision node

00000 000000 000000 00000 00	Default Policy	Optimality	
	000000		

Default Policy

	Default Policy 0●00000	Optimality 0000000	
NACTO CI	1.12		

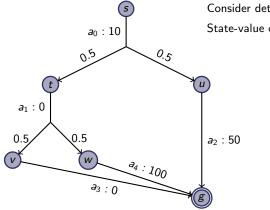
MCTS Simulation

MCTS simulation with default policy π from state s

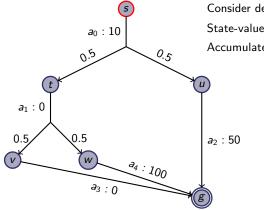
cost := 0while $s \notin S_{\star}$: $a :\sim \pi(s)$ cost := cost + c(a) $s :\sim succ(s, a)$ return cost

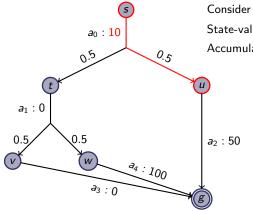
Default policy must be proper

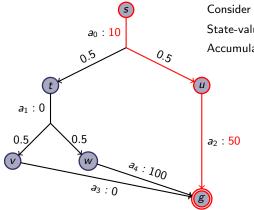
- to guarantee termination of the procedure
- and a finite cost



Consider deterministic default policy π State-value of *s* under π : 60







Default Policy Realizations

Early MCTS implementations used random default policy:

$$\pi(a \mid s) = egin{cases} rac{1}{\mid L(s) \mid} & ext{if } a \in L(s) \ 0 & ext{otherwise} \end{cases}$$

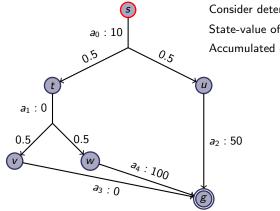
only proper if goal can be reached from each state
poor guidance, and due to high variance even misguidance

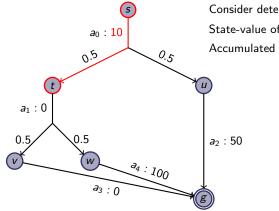
Default Policy Realizations

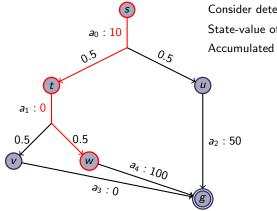
There are only few alternatives to random default policy, e.g.,

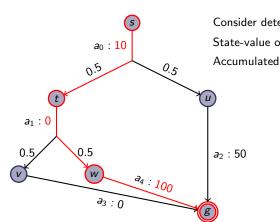
- heuristic-based policy
- domain-specific policy

Reason: No matter how good the policy, result of simulation can be arbitrarily poor









Default Policy Realizations

Possible solution to overcome this weakness:

- average over multiple random walks
- converges to true action-values of policy
- computationally often very expensive

Cheaper and more successful alternative:

- skip simulation step of MCTS
- use heuristic directly for initialization of state-value estimates
- instead of simulating execution of heuristic-guided policy
- much more successful (e.g. neural networks of AlphaGo)

000000 000000 00000 00		Optimality	Summary
		000000	00

Asymptotic Optimality

Default Policy 0000000	Optimality ○●○○○○○	
 _		

Optimal Search

Heuristic search algorithms (like AO* or RTDP) are optimal by combining

- greedy search
- admissible heuristic
- Bellman backups
- In Monte-Carlo Tree Search
 - search behavior defined by tree policy
 - admissibility of default policy / heuristic irrelevant (and usually not given)
 - Monte-Carlo backups

MCTS requires different idea for optimal behavior in the limit

	Default Policy 0000000	Optimality 000000	
Asymptot	ic Optimality		

Asymptotic Optimality

Let an MCTS algorithm build an MCTS tree $\mathcal{G} = \langle d_0, D, C, E \rangle$. The MCTS algorithm is asymptotically optimal if

$${
m lim}_{k
ightarrow\infty}\hat{Q}^k(c)=Q_\star(s(c),a(c)) ext{ for all } c\in C^k,$$

where k is the number of trials.

- this is just one special form of asymptotic optimality
- some optimal MCTS algorithms are not asymptotically optimal by this definition (e.g., $\lim_{k\to\infty} \hat{Q}^k(c) = \ell \cdot Q_*(s(c), a(c))$ for some $\ell \in \mathbb{R}^+$)
- all practically relevant optimal MCTS algorithms are asymptotically optimal by this definition

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if

- its tree policy explores forever:
 - the (infinite) sum of the probabilities that a decision node is visited must diverge
 - ⇒ every search node is explicated eventually and visited infinitely often
- its tree policy is greedy in the limit:
 - probability that optimal action is selected converges to 1
 - ⇒ in the limit, backups based on iterations where only an optimal policy is followed dominate suboptimal backups

③ its default policy initializes decision nodes with finite values

Example: Random Tree Policy

Example

Consider the random tree policy for decision node d where:

$$\pi(a \mid d) = egin{cases} rac{1}{\mid L(s(d)) \mid} & ext{if } a \in L(s(d)) \ 0 & ext{otherwise} \end{cases}$$

The random tree policy explores forever:

Let $\langle d_0, c_0, \dots, d_n, c_n, d \rangle$ be a sequence of connected nodes in \mathcal{G}^k and let $p := \min_{0 < i < n-1} T(s(d_i), a(c_i), s(d_{i+1})).$

Let \mathbb{P}^k be the probability that d is visited in trial k. With $\mathbb{P}^k \ge (\frac{1}{|L|} \cdot \underline{p})^n$, we have that

$$\lim_{k\to\infty}\sum_{i=1}^{k}\mathbb{P}^{k}\geq k\cdot (\frac{1}{|L|}\cdot \underline{p})^{n}=\infty$$

Example: Random Tree Policy

Example

Consider the random tree policy for decision node *d* where:

$$\pi(a \mid d) = egin{cases} rac{1}{\mid L(s(d)) \mid} & ext{if } a \in L(s(d)) \ 0 & ext{otherwise} \end{cases}$$

The random tree policy is not greedy in the limit unless all actions are always optimal:

The probability that an optimal action a is selected in decision node d is

$$\lim_{k\to\infty} 1-\sum_{\{a'
ot\in\pi_{V^\star}(s)\}}rac{1}{|L(s(d))|}<1.$$

 \rightsquigarrow MCTS with random tree policy not asymptotically optimal

Introduction	Default Policy	Optimality	MAB	
00000	000000	0000000	00000	
Example:	Greedy Tree P	olicy		

Example

Consider the greedy tree policy for decision node *d* where:

$$\pi(a \mid d) = egin{cases} rac{1}{\mid L^k_\star(d) \mid} & ext{if } a \in L^k_\star(d)) \ 0 & ext{otherwise}, \end{cases}$$

with $L^k_{\star}(d) = \{a(c) \in L(s(d)) \mid c \in \arg\min_{c' \in \operatorname{children}(d)} \hat{Q}^k(c')\}.$

- Greedy tree policy is greedy in the limit
- Greedy tree policy does not explore forever
- \rightsquigarrow MCTS with greedy tree policy not asymptotically optimal

00000	0000000	0000000	00000	00
	Default Policy	Optimality	MAB	

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two contradictory objectives:

- explore parts of the search space that have not been investigated thoroughly
- exploit knowledge about good actions to focus search on promising areas of the search space

central challenge: balance exploration and exploitation

 \Rightarrow borrow ideas from related multi-armed bandit problem

	Optimality	MAB	
		00000	

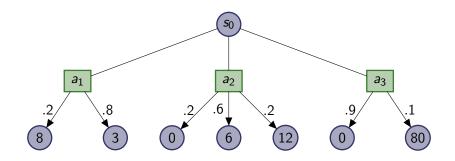
Multi-armed Bandit Problem

Multi-armed Bandit Problem

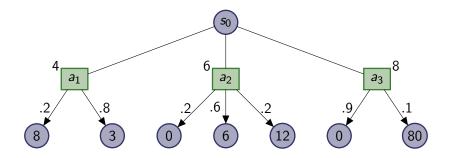
- most commonly used tree policies are inspired from research on the multi-armed bandit problem (MAB)
- MAB is a learning scenario (model not revealed to agent)
- agent repeatedly faces the same decision: to pull one of several arms of a slot machine
- pulling an arm yields stochastic reward ⇒ in MABs, we have rewards rather than costs
- can be modeled as MDP

		Optimality	MAB	
00000	000000	000000	00000	00

Multi-armed Bandit Problem

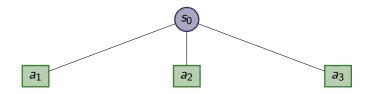


Default Policy 0000000	Optimality 0000000	MAB 00●00	

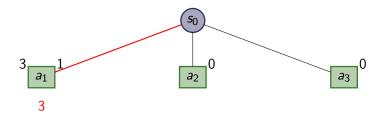


- Compute $Q_{\star}(a)$ for $a \in \{a_1, a_2, a_3\}$
- Pull arm $\arg \max_{a \in \{a_1, a_2, a_3\}} Q_{\star}(a) = a_3$ forever
- Expected accumulated reward after k trials is $8 \cdot k$

Default Policy 0000000	Optimality 0000000	MAB 00●00	

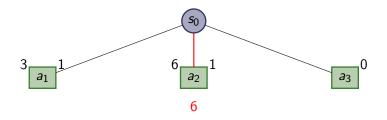


Pull arms following policy to explore or exploit
Update Â and N based on observations



- Pull arms following policy to explore or exploit
- Update \hat{Q} and N based on observations
- Accumulated reward after 1 trial is 3

Default Policy 0000000	Optimality 0000000	MAB ००●००	

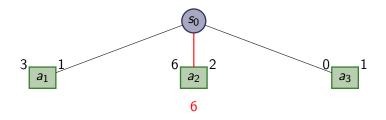


- Pull arms following policy to explore or exploit
- Update \hat{Q} and N based on observations
- Accumulated reward after 2 trials is 3 + 6 = 9



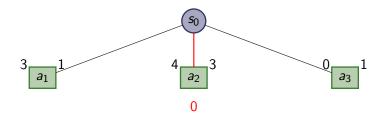
- Pull arms following policy to explore or exploit
- Update \hat{Q} and N based on observations
- Accumulated reward after 3 trials is 3 + 6 + 0 = 9

Default Policy 0000000	Optimality 0000000	MAB ००●००	

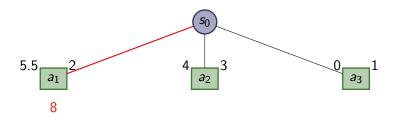


- Pull arms following policy to explore or exploit
- Update \hat{Q} and N based on observations
- Accumulated reward after 4 trials is 3 + 6 + 0 + 6 = 15

Default Policy 0000000	Optimality 0000000	MAB ००●००	



- Pull arms following policy to explore or exploit
- Update \hat{Q} and N based on observations
- Accumulated reward after 5 trials is 3 + 6 + 0 + 6 + 0 = 15



- Pull arms following policy to explore or exploit
- Update \hat{Q} and N based on observations
- Accumulated reward after 6 trials is 3 + 6 + 0 + 6 + 0 + 8 = 23

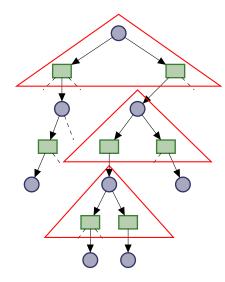
	Default Policy 0000000	Optimality 0000000	MAB 000●0	
Policy Qu	ality			

- Since model unknown to MAB agent, it cannot achieve accumulated reward of $k \cdot V_{\star}$ with $V_{\star} := \max_{a} Q_{\star}(a)$ in k trials
- Quality of MAB policy π measured in terms of regret, i.e., the difference between $k \cdot V_*$ and expected reward of π in k trials
- Regret cannot grow slower than logarithmic in number of trials

Default Policy 0000000	Optimality 0000000	MAB 0000●	

MABs in MCTS Tree

- many tree policies treat each decision node as MAB
- where each action yields a stochastic reward
- dependence of reward on future decision is ignored
- MCTS planner uses simulations to learn reasonable behavior
- SSP model is not considered



00000 000000 000000 0 0		Optimality	Summary
			•0

Summary

	Default Policy 0000000	Optimality 0000000	Summary ⊙●
Summary			

- simulation phase simulates execution of default policy
- MCTS algorithms are optimal in the limit if
 - tree policy is greedy in the limit
 - tree policy explores forever
 - default policy initializes with finite value
- central challenge of most tree policies: balance exploration and exploitation
- each decision of MCTS tree policy can be viewed as multi-armed bandit problem