
Planning and Optimization
G7. Monte-Carlo Tree Search Algorithms (Part I)

Malte Helmert and Thomas Keller

Universität Basel

December 16, 2019

Introduction Default Policy Optimality MAB Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

Introduction Default Policy Optimality MAB Summary

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

Monte-Carlo
Methods

Suboptimal
Algorithms

MCTS

Introduction Default Policy Optimality MAB Summary

Introduction

Introduction Default Policy Optimality MAB Summary

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

selection: use given tree policy to
traverse explicated tree

expansion: add node(s) to the tree

simulation: use given default policy
to simulate run

backpropagation: update visited
nodes with Monte-Carlo backups

Introduction Default Policy Optimality MAB Summary

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

selection: use given tree policy to
traverse explicated tree

expansion: add node(s) to the tree

simulation: use given default policy
to simulate run

backpropagation: update visited
nodes with Monte-Carlo backups

Introduction Default Policy Optimality MAB Summary

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

selection: use given tree policy to
traverse explicated tree

expansion: add node(s) to the tree

simulation: use given default policy
to simulate run

backpropagation: update visited
nodes with Monte-Carlo backups

Introduction Default Policy Optimality MAB Summary

Monte-Carlo Tree Search: Reminder

Performs iterations with 4 phases:

selection: use given tree policy to
traverse explicated tree

expansion: add node(s) to the tree

simulation: use given default policy
to simulate run

backpropagation: update visited
nodes with Monte-Carlo backups

Introduction Default Policy Optimality MAB Summary

Motivation

Monte-Carlo Tree Search is a framework of algorithms

concrete MCTS algorithms are specified in terms of

a tree policy;
and a default policy

for most tasks, a well-suited MCTS configuration exists

but for each task, many MCTS configurations perform poorly

and every MCTS configuration that works well in one problem
performs poorly in another problem

⇒ There is no “Swiss army knife” configuration for MCTS

Introduction Default Policy Optimality MAB Summary

Role of Tree Policy

used to traverse explicated tree from root node to a leaf

maps decision nodes to a probability distribution over actions
(usually as a function over a decision node and its children)

exploits information from search tree

able to learn over time
requires MCTS tree to memorize collected information

Introduction Default Policy Optimality MAB Summary

Role of Default Policy

used to simulate run from some state to a goal

maps states to a probability distribution over actions

independent from MCTS tree

does not improve over time
can be computed quickly
constant memory requirements

accumulated cost of simulated run used to
initialize state-value estimate of decision node

Introduction Default Policy Optimality MAB Summary

Default Policy

Introduction Default Policy Optimality MAB Summary

MCTS Simulation

MCTS simulation with default policy π from state s

cost := 0
while s /∈ S?:

a :∼ π(s)
cost := cost + c(a)
s :∼ succ(s, a)

return cost

Default policy must be proper

to guarantee termination of the procedure

and a finite cost

Introduction Default Policy Optimality MAB Summary

Default Policy: Example

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Introduction Default Policy Optimality MAB Summary

Default Policy: Example

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 0

Introduction Default Policy Optimality MAB Summary

Default Policy: Example

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 10

Introduction Default Policy Optimality MAB Summary

Default Policy: Example

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 60

Introduction Default Policy Optimality MAB Summary

Default Policy Realizations

Early MCTS implementations used random default policy:

π(a | s) =

{
1
|L(s)| if a ∈ L(s)

0 otherwise

only proper if goal can be reached from each state

poor guidance, and due to high variance even misguidance

Introduction Default Policy Optimality MAB Summary

Default Policy Realizations

There are only few alternatives to random default policy, e.g.,

heuristic-based policy

domain-specific policy

Reason: No matter how good the policy,
result of simulation can be arbitrarily poor

Introduction Default Policy Optimality MAB Summary

Default Policy: Example (2)

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 0

Introduction Default Policy Optimality MAB Summary

Default Policy: Example (2)

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 10

Introduction Default Policy Optimality MAB Summary

Default Policy: Example (2)

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 60

Introduction Default Policy Optimality MAB Summary

Default Policy: Example (2)

s

t u

v w

g

a0 : 10

0.5
0.5

a1 : 0

0.5 0.5 a2 : 50

a3 : 0

a4 : 100

Consider deterministic default policy π

State-value of s under π: 60

Accumulated cost of run: 110

Accumulated cost of run: 110

Introduction Default Policy Optimality MAB Summary

Default Policy Realizations

Possible solution to overcome this weakness:

average over multiple random walks

converges to true action-values of policy

computationally often very expensive

Cheaper and more successful alternative:

skip simulation step of MCTS

use heuristic directly for initialization of state-value estimates

instead of simulating execution of heuristic-guided policy

much more successful (e.g. neural networks of AlphaGo)

Introduction Default Policy Optimality MAB Summary

Asymptotic Optimality

Introduction Default Policy Optimality MAB Summary

Optimal Search

Heuristic search algorithms (like AO∗ or RTDP)
are optimal by combining

greedy search

admissible heuristic

Bellman backups

In Monte-Carlo Tree Search

search behavior defined by tree policy

admissibility of default policy / heuristic irrelevant
(and usually not given)

Monte-Carlo backups

MCTS requires different idea for optimal behavior in the limit

Introduction Default Policy Optimality MAB Summary

Asymptotic Optimality

Asymptotic Optimality

Let an MCTS algorithm build an MCTS tree G = 〈d0,D,C ,E 〉.
The MCTS algorithm is asymptotically optimal if

limk→∞Q̂k(c) = Q?(s(c), a(c)) for all c ∈ C k ,

where k is the number of trials.

this is just one special form of asymptotic optimality

some optimal MCTS algorithms are
not asymptotically optimal by this definition
(e.g., limk→∞Q̂k(c) = ` · Q?(s(c), a(c)) for some ` ∈ R+)

all practically relevant optimal MCTS algorithms are
asymptotically optimal by this definition

Introduction Default Policy Optimality MAB Summary

Asymptotically Optimal Tree Policy

An MCTS algorithm is asymptotically optimal if
1 its tree policy explores forever:

the (infinite) sum of the probabilities that a decision node is
visited must diverge
⇒ every search node is explicated eventually and visited
infinitely often

2 its tree policy is greedy in the limit:

probability that optimal action is selected converges to 1
⇒ in the limit, backups based on iterations where only
an optimal policy is followed dominate suboptimal backups

3 its default policy initializes decision nodes with finite values

Introduction Default Policy Optimality MAB Summary

Example: Random Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy explores forever:

Let 〈d0, c0, . . . , dn, cn, d〉 be a sequence of connected nodes in Gk
and let p := min0<i<n−1 T (s(di), a(ci), s(di+1)).

Let Pk be the probability that d is visited in trial k . With
Pk ≥ (1

|L| · p)n, we have that

limk→∞

k∑
i=1

Pk ≥ k · (1

|L|
· p)n =∞

Introduction Default Policy Optimality MAB Summary

Example: Random Tree Policy

Example

Consider the random tree policy for decision node d where:

π(a | d) =

{
1

|L(s(d))| if a ∈ L(s(d))

0 otherwise

The random tree policy is not greedy in the limit unless all actions
are always optimal:

The probability that an optimal action a is selected in decision
node d is

limk→∞1−
∑

{a′ 6∈πV? (s)}

1

|L(s(d))|
< 1.

 MCTS with random tree policy not asymptotically optimal

Introduction Default Policy Optimality MAB Summary

Example: Greedy Tree Policy

Example

Consider the greedy tree policy for decision node d where:

π(a | d) =

{
1

|Lk?(d)|
if a ∈ Lk?(d))

0 otherwise,

with Lk?(d) = {a(c) ∈ L(s(d)) | c ∈ arg minc ′∈children(d) Q̂
k(c ′)}.

Greedy tree policy is greedy in the limit

Greedy tree policy does not explore forever

 MCTS with greedy tree policy not asymptotically optimal

Introduction Default Policy Optimality MAB Summary

Tree Policy: Objective

To satisfy both requirements, MCTS tree policies have two
contradictory objectives:

explore parts of the search space that have not been
investigated thoroughly

exploit knowledge about good actions to focus search
on promising areas of the search space

central challenge: balance exploration and exploitation

⇒ borrow ideas from related multi-armed bandit problem

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem

most commonly used tree policies are inspired from research
on the multi-armed bandit problem (MAB)

MAB is a learning scenario (model not revealed to agent)

agent repeatedly faces the same decision:
to pull one of several arms of a slot machine

pulling an arm yields stochastic reward
⇒ in MABs, we have rewards rather than costs

can be modeled as MDP

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Compute Q?(a) for a ∈ {a1, a2, a3}
Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

Expected accumulated reward after k trials is 8 · k

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Planning Scenario

s0

a1 a2 a3
4

3

3 1

8

5.5 2

6

0

6

6 1

6

6 2

0

4 3

8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Compute Q?(a) for a ∈ {a1, a2, a3}
Pull arm arg maxa∈{a1,a2,a3}Q?(a) = a3 forever

Expected accumulated reward after k trials is 8 · k

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6

0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 1 trial is 3

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 8

0

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 2 trials is 3 + 6 = 9

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 3 trials is 3 + 6 + 0 = 9

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3 80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 4 trials is 3 + 6 + 0 + 6 = 15

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2 6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 5 trials is 3 + 6 + 0 + 6 + 0 = 15

Introduction Default Policy Optimality MAB Summary

Multi-armed Bandit Problem: Learning Scenario

s0

a1 a2 a3

4

3

3 1

8

5.5 2

6 0

6

6 1

6

6 2

0

4 3

80

0

0 1

8 3 0 6 12 0 80

.2 .8 .2 .6 .2 .9 .1

Pull arms following policy to explore or exploit

Update Q̂ and N based on observations

Accumulated reward after 6 trials is 3 + 6 + 0 + 6 + 0 + 8 = 23

Introduction Default Policy Optimality MAB Summary

Policy Quality

Since model unknown to MAB agent, it cannot achieve
accumulated reward of k ·V? with V? := maxa Q?(a) in k trials

Quality of MAB policy π measured in terms of regret, i.e., the
difference between k · V? and expected reward of π in k trials

Regret cannot grow slower than logarithmic in number of trials

Introduction Default Policy Optimality MAB Summary

MABs in MCTS Tree

many tree policies treat each
decision node as MAB

where each action yields a
stochastic reward

dependence of reward on future
decision is ignored

MCTS planner uses simulations
to learn reasonable behavior

SSP model is not considered

Introduction Default Policy Optimality MAB Summary

Summary

Introduction Default Policy Optimality MAB Summary

Summary

simulation phase simulates execution of default policy

MCTS algorithms are optimal in the limit if

tree policy is greedy in the limit
tree policy explores forever
default policy initializes with finite value

central challenge of most tree policies:
balance exploration and exploitation

each decision of MCTS tree policy can be viewed as
multi-armed bandit problem

	Introduction
	Default Policy
	Asymptotic Optimality
	Multi-armed Bandit Problem
	Summary

