

G7.1 Introduction

M. Helmert, T. Keller (Universität Basel)

December 16, 2019 5 / 40

Planning and Optimization

2		
Per	forms iterations with 4 phases:	\mathbf{Q}
•	selection: use given tree policy to traverse explicated tree	
	expansion: add node(s) to the tre	e 🖌 `` 🖕 ´` 🔪
•	simulation: use given default polic to simulate run	
	backpropagation: update visited nodes with Monte-Carlo backups	لم ح

7 / 40

G7. Monte-Carlo Tree Search Algorithms (Part I) Introduction Motivation Monte-Carlo Tree Search is a framework of algorithms concrete MCTS algorithms are specified in terms of a tree policy; and a default policy for most tasks, a well-suited MCTS configuration exists but for each task, many MCTS configurations perform poorly ▶ and every MCTS configuration that works well in one problem performs poorly in another problem \Rightarrow There is no "Swiss army knife" configuration for MCTS M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 16, 2019 10 / 40

G7. Monte-Carlo Tree Search Algorithms (Part I)
Role of Default Policy
used to simulate run from some state to a goal
maps states to a probability distribution over actions
independent from MCTS tree

does not improve over time
can be computed quickly
constant memory requirements

accumulated cost of simulated run used to initialize state-value estimate of decision node

11 / 40

13 / 40

G7.2 Default Policy

M. Helmert, T. Keller (Universität Basel)

December 16, 2019

Planning and Optimization

G7. Monte-Carlo Tree Search Algorithms (Part I)

MCTS Simulation

MCTS simulation with default policy π from state scost := 0 while $s \notin S_{\star}$: $a :\sim \pi(s)$ cost := cost + c(a) $s :\sim \text{succ}(s, a)$ return cost

Default policy must be proper

- ► to guarantee termination of the procedure
- and a finite cost

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

December 16, 2019 14 / 40

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

G7. Monte-Carlo Tree Search Algorithms (Part I)

Asymptotic Optimality

Optimal Search

Heuristic search algorithms (like AO^{*} or RTDP) are optimal by combining

- greedy search
- admissible heuristic
- Bellman backups

In Monte-Carlo Tree Search

- search behavior defined by tree policy
- admissibility of default policy / heuristic irrelevant (and usually not given)
- Monte-Carlo backups

MCTS requires different idea for optimal behavior in the limit

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

G7. Monte-Carlo Tree Search Algorithms (Part I)

Asymptotic Optimality

December 16, 2019

21 / 40

- ⇒ in the limit, backups based on iterations where only an optimal policy is followed dominate suboptimal backups
- () its default policy initializes decision nodes with finite values

Asymptotic Optimality

Asymptotic Optimality

Asymptotic Optimality

Let an MCTS algorithm build an MCTS tree $\mathcal{G} = \langle d_0, D, C, E \rangle$. The MCTS algorithm is asymptotically optimal if

$$\lim_{k o\infty} \hat{Q}^k(c) = Q_\star(s(c), a(c)) ext{ for all } c\in C^k,$$

where k is the number of trials.

- this is just one special form of asymptotic optimality
- some optimal MCTS algorithms are not asymptotically optimal by this definition (e.g., lim_{k→∞} Q̂^k(c) = ℓ · Q_{*}(s(c), a(c)) for some ℓ ∈ ℝ⁺)
 all practically relevant optimal MCTS algorithms are
- all practically relevant optimal MCTS algorithms are asymptotically optimal by this definition

```
M. Helmert, T. Keller (Universität Basel)
```

Planning and Optimization

December 16, 2019 22 / 40

G7. Monte-Carlo Tree Search Algorithms (Part I)

Asymptotic Optimality

Example: Random Tree Policy

Example

Consider the random tree policy for decision node d where:

$$\pi(a \mid d) = egin{cases} rac{1}{\mid L(s(d)) \mid} & ext{if } a \in L(s(d)) \\ 0 & ext{otherwise} \end{cases}$$

The random tree policy explores forever:

Let $\langle d_0, c_0, \dots, d_n, c_n, d \rangle$ be a sequence of connected nodes in \mathcal{G}^k and let $p := \min_{0 \le i \le n-1} T(s(d_i), a(c_i), s(d_{i+1})).$

Let \mathbb{P}^k be the probability that d is visited in trial k. With $\mathbb{P}^k \ge (\frac{1}{|L|} \cdot \underline{p})^n$, we have that

$$lim_{k \to \infty} \sum_{i=1}^{k} \mathbb{P}^{k} \ge k \cdot (\frac{1}{|L|} \cdot \underline{p})^{n} = \infty$$

Planning and Optimization

G7. Monte-Carlo Tree Search Algorithms (Part I)

Example: Random Tree Policy

Example

Consider the random tree policy for decision node *d* where:

$$\pi(a \mid d) = \begin{cases} rac{1}{|L(s(d))|} & ext{if } a \in L(s(d)) \\ 0 & ext{otherwise} \end{cases}$$

The random tree policy is not greedy in the limit unless all actions are always optimal:

The probability that an optimal action a is selected in decision node d is

$$\lim_{k\to\infty} 1-\sum_{\{a'\notin\pi_{V^*}(s)\}}\frac{1}{|L(s(d))|}<1.$$

 \rightsquigarrow MCTS with random tree policy not asymptotically optimal

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

Asymptotic Optimality

25 / 40

December 16, 2019

Asymptotic Optimality

G7. Monte-Carlo Tree Search Algorithms (Part I)


```
G7. Monte-Carlo Tree Search Algorithms (Part I)
```

Asymptotic Optimality

Example: Greedy Tree Policy

Example

Consider the greedy tree policy for decision node *d* where:

$$\pi(a \mid d) = egin{cases} rac{1}{\mid L^k_\star(d) \mid} & ext{if } a \in L^k_\star(d)) \ 0 & ext{otherwise,} \end{cases}$$

with $L^k_\star(d) = \{a(c) \in L(s(d)) \mid c \in \arg\min_{c' \in \mathsf{children}(d)} \hat{Q}^k(c')\}.$

- Greedy tree policy is greedy in the limit
- Greedy tree policy does not explore forever

 \rightsquigarrow MCTS with greedy tree policy not asymptotically optimal

```
M. Helmert, T. Keller (Universität Basel)
```

Planning and Optimization De

December 16, 2019 26 / 40

December 16, 2019 36 / 40

Multi-armed Bandit Problem

a₃

December 16, 2019

a₃

Multi-armed Bandit Problem

34 / 40

G7. Monte-Carlo Tree Search Algorithms (Part I)

Multi-armed Bandit Problem

Policy Quality

- Since model unknown to MAB agent, it cannot achieve accumulated reward of $k \cdot V_{\star}$ with $V_{\star} := \max_{a} Q_{\star}(a)$ in k trials
- Quality of MAB policy π measured in terms of regret, i.e., the difference between $k \cdot V_{\star}$ and expected reward of π in k trials
- Regret cannot grow slower than logarithmic in number of trials

Planning and Optimization

Planning and Optimization

G7. Monte-Carlo Tree Search Algorithms (Part I)

M. Helmert, T. Keller (Universität Basel)

37 / 40

Summary

39 / 40

December 16, 2019

G7.5 Summary

Multi-armed Bandit Problem

many tree policies treat each decision node as MAB

- where each action yields a stochastic reward
- dependence of reward on future decision is ignored
- MCTS planner uses simulations to learn reasonable behavior
- SSP model is not considered

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

December 16, 2019 38 / 40

