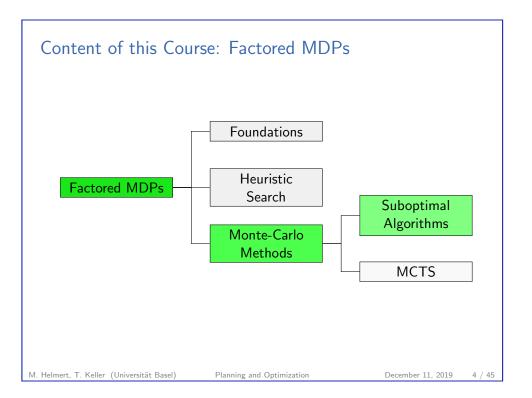
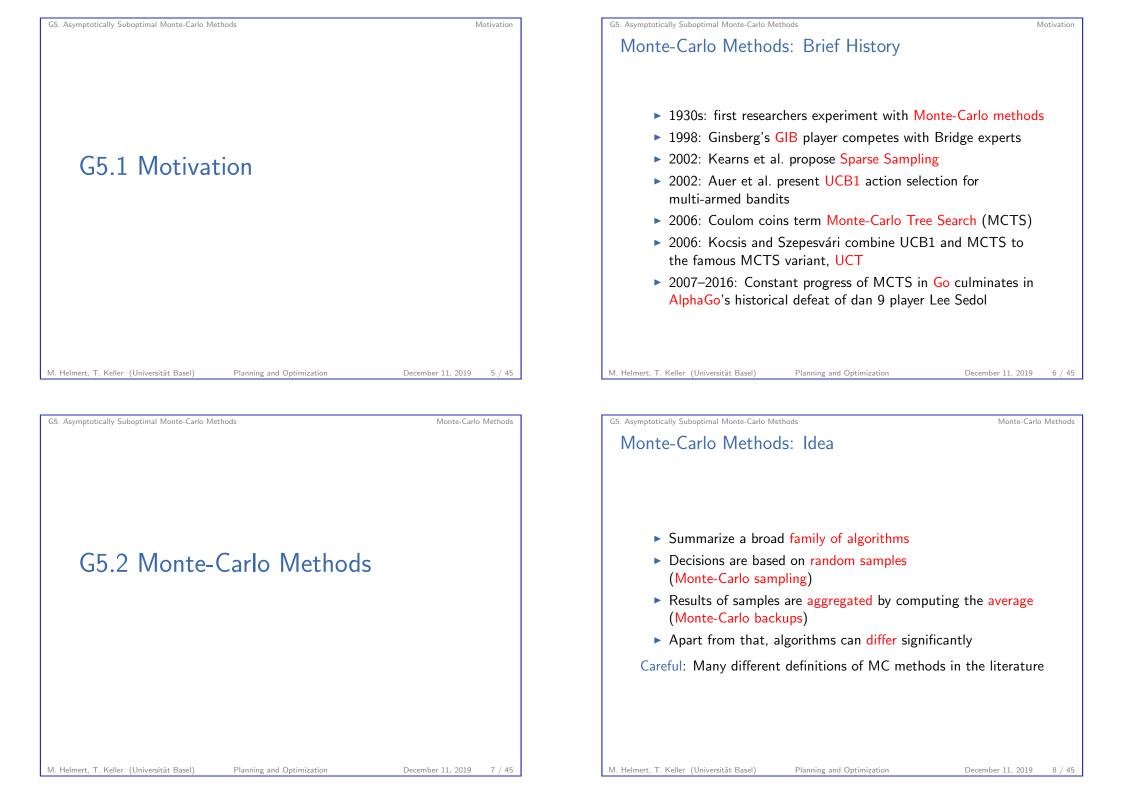


Planning and Optimization December 11, 2019 — G5. Asymptotically Suboptimal Monte-Carlo Methods

G5.1 Motivation	
G5.2 Monte-Carlo Methods	
G5.3 Hindsight Optimization	
G5.4 Policy Simulation	
G5.5 Sparse Sampling	
G5.6 Summary	
M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 11, 20	019 2 / 45





Types of Random Samples

Random samples only have in common that something is drawn from a given probability distribution. Some examples:

- a determinization is sampled (Hindsight Optimization)
- runs under a fixed policy are simulated (Policy Simulation)
- considered outcomes are sampled (Sparse Sampling)
- runs under an evolving policy are simulated (Monte-Carlo Tree Search)

M. Helmert, T. Keller (Universität Basel)

Monte-Carlo Methods

9 / 45

December 11, 2019

Monte-Carlo Methods

G5. Asymptotically Suboptimal Monte-Carlo Methods Monte-Carlo Backups

Monte-Carlo methods estimate state-values by averaging over all samples instead.

Planning and Optimization

Let $N^i(s)$ be the number of samples for state s in the i first algorithm iterations and let $cost^k(s)$ be the cost for s in the k-th sample $(cost^k(s) = 0$ if k-th sample has no estimate for s).

The *i*-th state-value estimate of state *s*, $\hat{V}^i(s)$, is computed with Monte-Carlo backups as

$$\hat{V}^i(s) := rac{1}{N^i(s)} \cdot \sum_{k=1}^i cost^k(s)$$

Reminder: Bellman Backups

Algorithms like Value Iteration, $(L)AO^*$ or (L)RTDP use the Bellman equation as an update procedure.

The *i*-th state-value estimate of state *s*, $\hat{V}^{i}(s)$, is computed with Bellman backups as

$$\hat{V}^i(s) := \min_{\ell \in L(s)} \left(c(\ell) + \sum_{s' \in S} T(s,\ell,s') \cdot \hat{V}^{i-1}(s') \right).$$

(Some algorithms use a heuristic if the state-value estimate on the right hand side of the Bellman backup is undefined.)

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

December 11, 2019

G5. Asymptotically Suboptimal Monte-Carlo Methods

Monte-Carlo Methods

10 / 45

Monte-Carlo Backups: Properties

no need to store cost^k(s) for k = 1,...,i: it is possible to compute Monte-Carlo backups iteratively as

$$\hat{V}^i(s) := \hat{V}^{i-1}(s) + rac{1}{N^i(s)}(cost^i(s) - \hat{V}^{i-1}(s))$$

- no need to know SSP model for backups
- if s is a random variable, Vⁱ(s) converges to E[s] due to the strong law of large numbers
- \blacktriangleright if s is not a random variable, this is not always the case

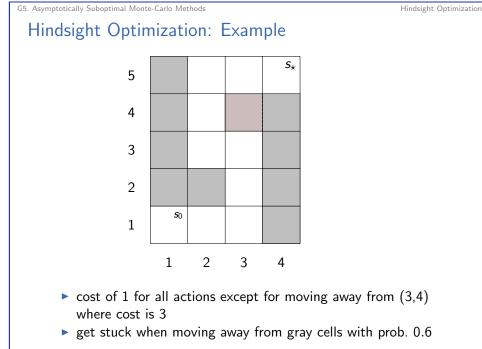
M. Helmert, T. Keller (Universität Basel)

15 / 45

G5.3 Hindsight Optimization

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization December 11, 2019



G5.	Asymptotically	Suboptimal	Monte-Carlo	Methods	

Hindsight Optimization: Idea

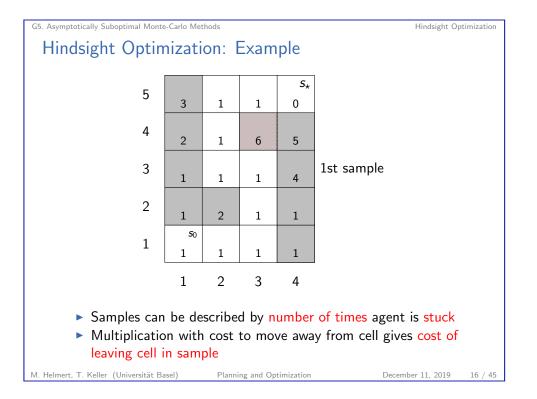
Repeat as long as resources (deliberation time, memory) allow:

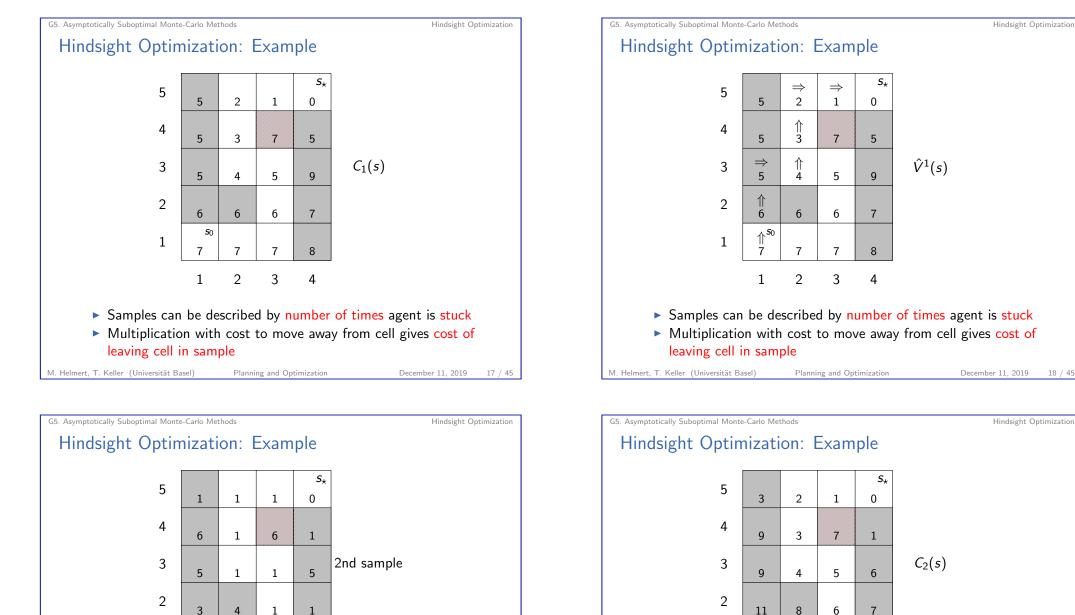
- Sample outcomes of all actions ⇒ deterministic (classical) planning problem
- For each applicable action ℓ ∈ L(s₀), compute plan in the sample that starts with ℓ
- Execute the action with the lowest average plan cost

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

December 11, 2019 14 / 45





1 2 3 4 Samples can be described by number of times agent is stuck Multiplication with cost to move away from cell gives cost of leaving cell in sample

1

S0

1

1

1

1

19 / 45

Planning and Optimization

8

4

s0

8

2

7

3

Samples can be described by number of times agent is stuck

Multiplication with cost to move away from cell gives cost of

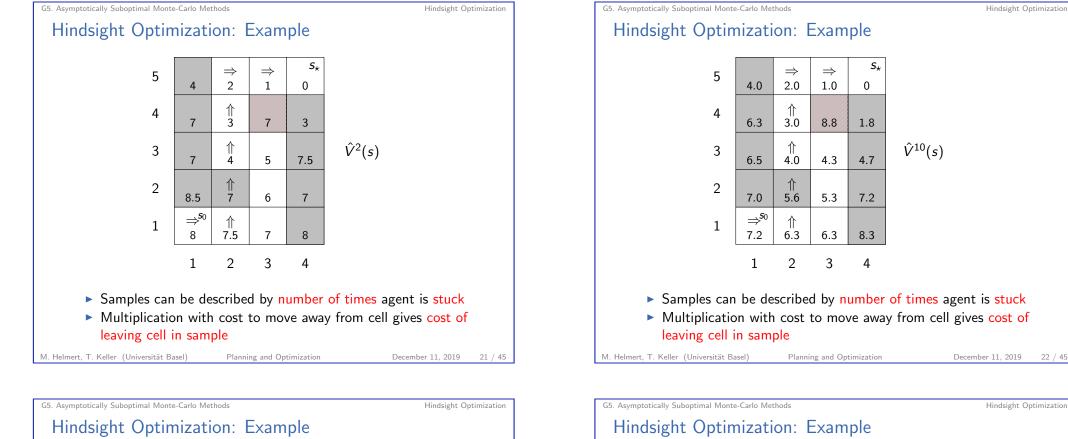
9

1

1

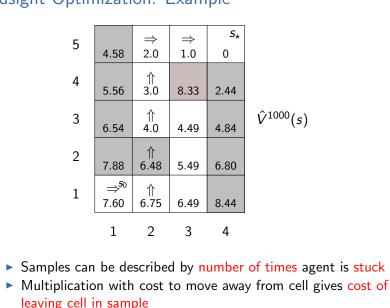
leaving cell in sample

18 / 45



5		\Rightarrow	\Rightarrow	<i>s</i> *	
	4.55	2.0	1.0	0	
4	5.43	↑ 3.0	8.50	2.40	
	5.45	5.0	0.50	2.40	
3	6.57	↑ 4.0	⇐ 4.51	4.99	$\hat{V}^{100}(s)$
2			↑		
2	8.22	6.69	5.51	7.16	
1	\Rightarrow^{s_0}	\Rightarrow	↑		
_	7.69	6.89	6.51	8.48	
	1	2	3	4	

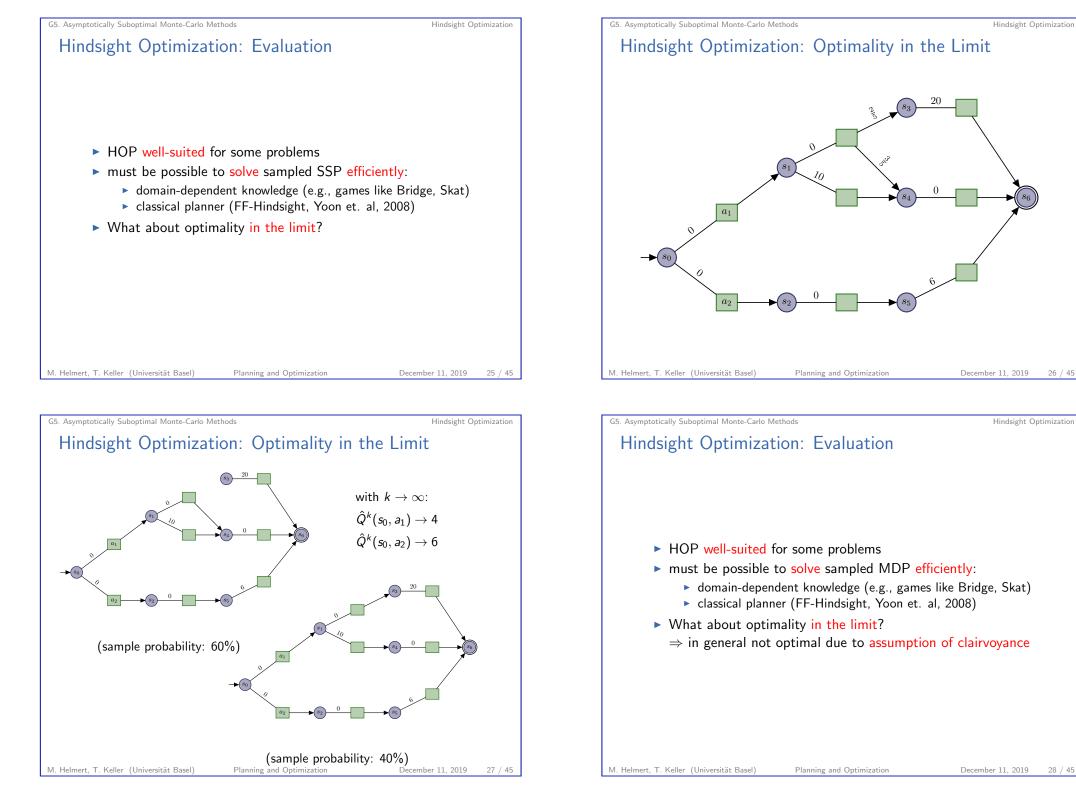
- Samples can be described by number of times agent is stuck
- Multiplication with cost to move away from cell gives cost of leaving cell in sample



Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

22 / 45



31 / 45

Policy Simulation

G5.4 Policy Simulation

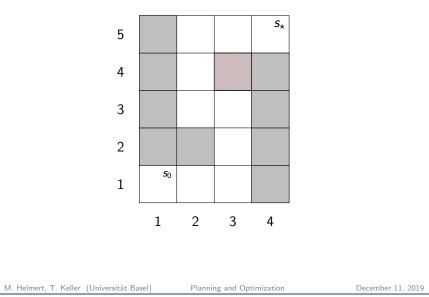
M. Helmert, T. Keller (Universität Basel)

December 11, 2019

G5. Asymptotically Suboptimal Monte-Carlo Methods

Policy Simulation: Example (following Optimistic Policy)

Planning and Optimization

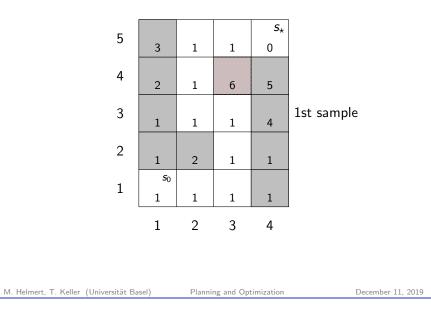


Repeat as long as resources (deliberation time, memory) allow:
For each applicable action ℓ ∈ L(s₀), start a run from s₀ with ℓ and then follow a given policy π
Execute the action with the lowest average simulation cost Avoids clairvoyance by evaluation of policy through simulation of its execution.

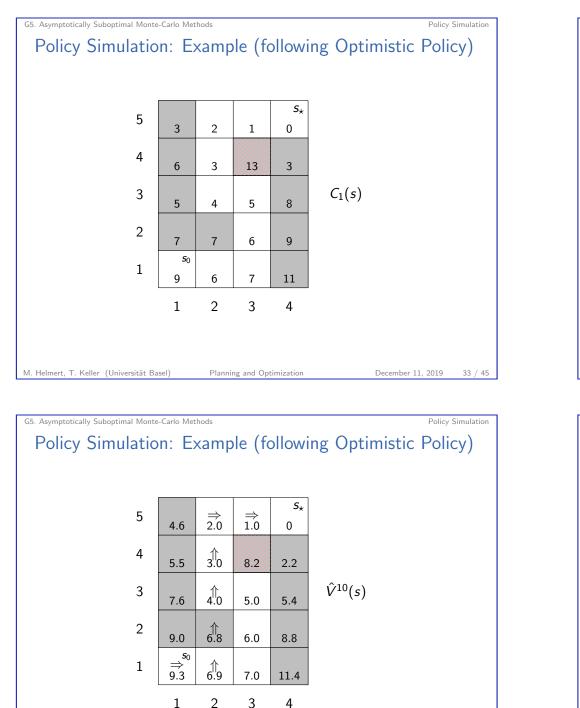
G5. Asymptotically Suboptimal Monte-Carlo Methods

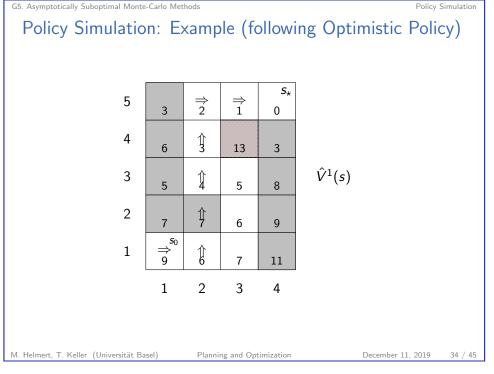
Policy Simulation: Idea

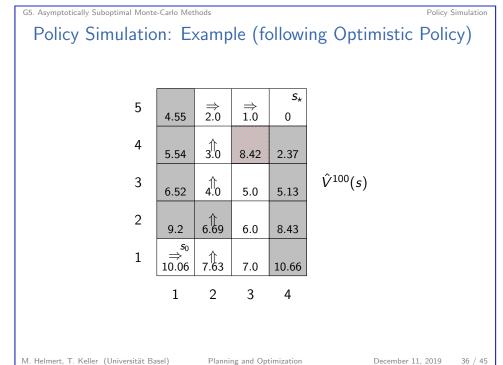
G5. Asymptotically Suboptimal Monte-Carlo Methods Policy Simulation Policy Simulation: Example (following Optimistic Policy)



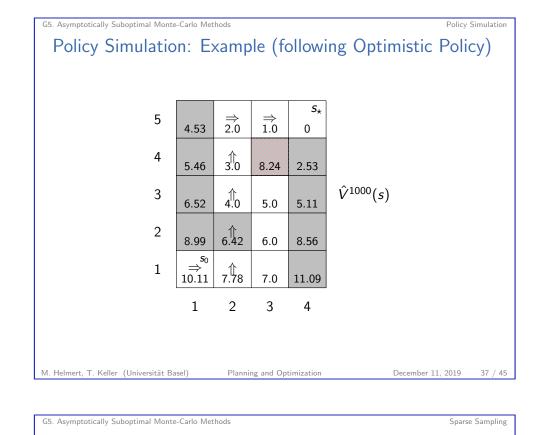
32 / 45







Planning and Optimization



Base policy is state	tic	
	o <mark>overcome</mark> weaknesses o veaknesses, we don't need	
Suboptimal decis	ions in simulation affect	policy quality
► What about opti ⇒ in general not	mality in the limit? optimal due to inability	of policy to improve

G5. Asymptotically Suboptimal Monte-Carlo Methods Sparse Sampling: Idea

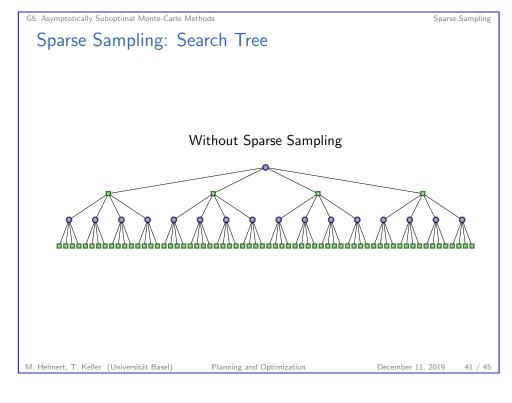
G5. Asymptotically Suboptimal Monte-Carlo Methods

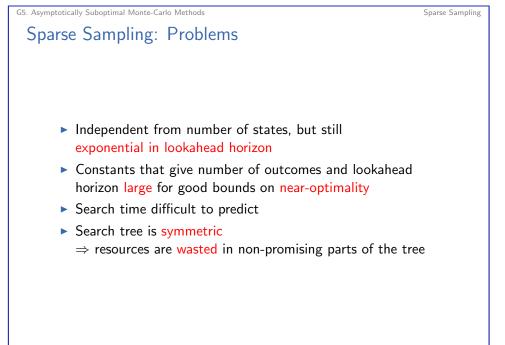
Sparse Sampling (Kearns et al., 2002) approaches problem that number of reachable states under a policy can be too large

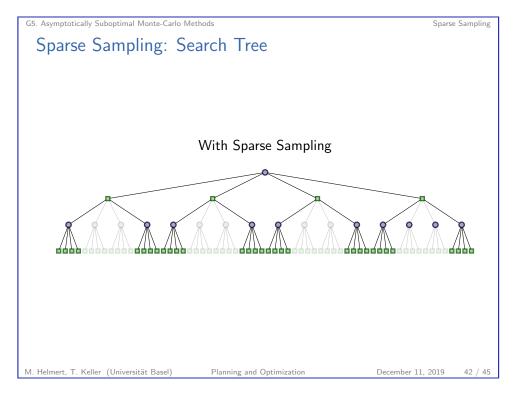
- Creates search tree up to a given lookahead horizon
- A constant number of outcomes is sampled for each state-action pair
- Outcomes that were not sampled are ignored
- Near-optimal: expected cost of resulting policy close to expected cost of optimal policy
- Runtime independent from the number of states

Policy Simulation

Sparse Sampling







G5. Asymptotically Suboptimal Monte-Carlo Methods

Summary

 Monte-Carlo methods have a long history but no successful applications until 1990s

- Monte-Carlo methods use sampling and backups that average over sample results
- Hindsight optimization averages over plan cost in sampled determinization
- Policy simulation simulates the exection of a policy
- Sparse sampling considers only a fixed amount of outcomes

Planning and Optimization

► All three methods are not optimal in the limit

December 11, 2019

11, 2019 45 / 45

Summarv