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G5. Asymptotically Suboptimal Monte-Carlo Methods Motivation

Monte-Carlo Methods: Brief History

I 1930s: first researchers experiment with Monte-Carlo methods

I 1998: Ginsberg’s GIB player competes with Bridge experts

I 2002: Kearns et al. propose Sparse Sampling

I 2002: Auer et al. present UCB1 action selection for
multi-armed bandits

I 2006: Coulom coins term Monte-Carlo Tree Search (MCTS)

I 2006: Kocsis and Szepesvári combine UCB1 and MCTS to
the famous MCTS variant, UCT

I 2007–2016: Constant progress of MCTS in Go culminates in
AlphaGo’s historical defeat of dan 9 player Lee Sedol
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G5.2 Monte-Carlo Methods
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G5. Asymptotically Suboptimal Monte-Carlo Methods Monte-Carlo Methods

Monte-Carlo Methods: Idea

I Summarize a broad family of algorithms

I Decisions are based on random samples
(Monte-Carlo sampling)

I Results of samples are aggregated by computing the average
(Monte-Carlo backups)

I Apart from that, algorithms can differ significantly

Careful: Many different definitions of MC methods in the literature
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Types of Random Samples

Random samples only have in common that something is drawn
from a given probability distribution. Some examples:

I a determinization is sampled (Hindsight Optimization)

I runs under a fixed policy are simulated (Policy Simulation)

I considered outcomes are sampled (Sparse Sampling)

I runs under an evolving policy are simulated
(Monte-Carlo Tree Search)
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Reminder: Bellman Backups

Algorithms like Value Iteration, (L)AO∗ or (L)RTDP use the
Bellman equation as an update procedure.

The i-th state-value estimate of state s, V̂ i (s), is computed with
Bellman backups as

V̂ i (s) := min
`∈L(s)

(
c(`) +

∑
s′∈S

T (s, `, s ′) · V̂ i−1(s ′)

)
.

(Some algorithms use a heuristic if the state-value estimate on the
right hand side of the Bellman backup is undefined.)
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Monte-Carlo Backups

Monte-Carlo methods estimate state-values by averaging over all
samples instead.

Let N i (s) be the number of samples for state s in the i first
algorithm iterations and let costk(s) be the cost for s in the k-th
sample (costk(s) = 0 if k-th sample has no estimate for s).

The i-th state-value estimate of state s, V̂ i (s), is computed with
Monte-Carlo backups as

V̂ i (s) :=
1

N i (s)
·

i∑
k=1

costk(s).

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 11, 2019 11 / 45

G5. Asymptotically Suboptimal Monte-Carlo Methods Monte-Carlo Methods

Monte-Carlo Backups: Properties

I no need to store costk(s) for k = 1, . . . , i :
it is possible to compute Monte-Carlo backups iteratively as

V̂ i (s) := V̂ i−1(s) +
1

N i (s)
(costi (s)− V̂ i−1(s))

I no need to know SSP model for backups

I if s is a random variable, V̂ i (s) converges to E[s]
due to the strong law of large numbers

I if s is not a random variable, this is not always the case
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G5.3 Hindsight Optimization
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G5. Asymptotically Suboptimal Monte-Carlo Methods Hindsight Optimization

Hindsight Optimization: Idea

Repeat as long as resources (deliberation time, memory) allow:

I Sample outcomes of all actions
⇒ deterministic (classical) planning problem

I For each applicable action ` ∈ L(s0),
compute plan in the sample that starts with `

I Execute the action with the lowest average plan cost
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)2nd sampleC2(s)V̂ 2(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

s?

I cost of 1 for all actions except for moving away from (3,4)
where cost is 3

I get stuck when moving away from gray cells with prob. 0.6

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sample

C1(s)V̂ 1(s)2nd sampleC2(s)V̂ 2(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

1 1 1 1

1 2 1 1

1 1 1 4

2 1 6 5

3 1 1 0

s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sample

C1(s)

V̂ 1(s)2nd sampleC2(s)V̂ 2(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

7 7 7 8

6 6 6 7

5 4 5 9

5 3 7 5

5 2 1 0

s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)

V̂ 1(s)

2nd sampleC2(s)V̂ 2(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

7 7 7 8

6 6 6 7

5 4 5 9

5 3 7 5

5 2 1 0

⇑

⇑

⇒ ⇑

⇑

⇒ ⇒ s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)

2nd sample

C2(s)V̂ 2(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

1 1 1 1

3 4 1 1

5 1 1 5

6 1 6 1

1 1 1 0

s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)2nd sample

C2(s)

V̂ 2(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

9 8 7 8

11 8 6 7

9 4 5 6

9 3 7 1

3 2 1 0

s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)2nd sampleC2(s)

V̂ 2(s)

V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

8 7.5 7 8

8.5 7 6 7

7 4 5 7.5

7 3 7 3

4 2 1 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒ s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)2nd sampleC2(s)V̂ 2(s)

V̂ 10(s)

V̂ 100(s)V̂ 1000(s)

s0

7.2 6.3 6.3 8.3

7.0 5.6 5.3 7.2

6.5 4.0 4.3 4.7

6.3 3.0 8.8 1.8

4.0 2.0 1.0 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒ s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)2nd sampleC2(s)V̂ 2(s)V̂ 10(s)

V̂ 100(s)

V̂ 1000(s)

s0

7.69 6.89 6.51 8.48

8.22 6.69 5.51 7.16

6.57 4.0 4.51 4.99

5.43 3.0 8.50 2.40

4.55 2.0 1.0 0

⇒ ⇒ ⇑

⇑

⇐⇑

⇑

⇒ ⇒ s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Example

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)2nd sampleC2(s)V̂ 2(s)V̂ 10(s)V̂ 100(s)

V̂ 1000(s)

s0

7.60 6.75 6.49 8.44

7.88 6.48 5.49 6.80

6.54 4.0 4.49 4.84

5.56 3.0 8.33 2.44

4.58 2.0 1.0 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒ s?

I Samples can be described by number of times agent is stuck
I Multiplication with cost to move away from cell gives cost of

leaving cell in sample
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Hindsight Optimization: Evaluation

I HOP well-suited for some problems
I must be possible to solve sampled SSP efficiently:

I domain-dependent knowledge (e.g., games like Bridge, Skat)
I classical planner (FF-Hindsight, Yoon et. al, 2008)

I What about optimality in the limit?

⇒ often not optimal due to assumption of clairvoyance
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Hindsight Optimization: Optimality in the Limit

s0

s1

s2

s3

s4

s5

s6

a1

a2

0

0

0

10

0

2
5

3
5

20

0

6
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Hindsight Optimization: Optimality in the Limit
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s0

s1

s2

s3

s4

s5

s6

a1

a2

0

0

0
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0

20

0

6

(sample probability: 60%)

s0

s1

s2

s3

s4

s5

s6

a1

a2

0

0

0

10

0

20

0

6

(sample probability: 40%)

with k →∞:

Q̂k(s0, a1)→ 4

Q̂k(s0, a2)→ 6

G5. Asymptotically Suboptimal Monte-Carlo Methods Hindsight Optimization

Hindsight Optimization: Evaluation

I HOP well-suited for some problems
I must be possible to solve sampled MDP efficiently:

I domain-dependent knowledge (e.g., games like Bridge, Skat)
I classical planner (FF-Hindsight, Yoon et. al, 2008)

I What about optimality in the limit?
⇒ in general not optimal due to assumption of clairvoyance
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G5.4 Policy Simulation
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G5. Asymptotically Suboptimal Monte-Carlo Methods Policy Simulation

Policy Simulation: Idea

Repeat as long as resources (deliberation time, memory) allow:

I For each applicable action ` ∈ L(s0),
start a run from s0 with ` and then follow a given policy π

I Execute the action with the lowest average simulation cost

Avoids clairvoyance by evaluation of policy
through simulation of its execution.
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Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

s?
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Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sample

C1(s)V̂ 1(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

1 1 1 1

1 2 1 1

1 1 1 4

2 1 6 5

3 1 1 0

s?
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Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sample

C1(s)

V̂ 1(s)V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

9 6 7 11

7 7 6 9

5 4 5 8

6 3 13 3

3 2 1 0

s?
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Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sampleC1(s)

V̂ 1(s)

V̂ 10(s)V̂ 100(s)V̂ 1000(s)

s0

9 6 7 11

7 7 6 9

5 4 5 8

6 3 13 3

3 2 1 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒
s?

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 11, 2019 34 / 45

G5. Asymptotically Suboptimal Monte-Carlo Methods Policy Simulation

Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)

V̂ 10(s)

V̂ 100(s)V̂ 1000(s)

s0

9.3 6.9 7.0 11.4

9.0 6.8 6.0 8.8

7.6 4.0 5.0 5.4

5.5 3.0 8.2 2.2

4.6 2.0 1.0 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒
s?
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Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)V̂ 10(s)

V̂ 100(s)

V̂ 1000(s)

s0

10.06 7.63 7.0 10.66

9.2 6.69 6.0 8.43

6.52 4.0 5.0 5.13

5.54 3.0 8.42 2.37

4.55 2.0 1.0 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒
s?
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Policy Simulation: Example (following Optimistic Policy)

1 2 3 4

1

2

3

4

5

1st sampleC1(s)V̂ 1(s)V̂ 10(s)V̂ 100(s)

V̂ 1000(s)

s0

10.11 7.78 7.0 11.09

8.99 6.42 6.0 8.56

6.52 4.0 5.0 5.11

5.46 3.0 8.24 2.53

4.53 2.0 1.0 0

⇒ ⇑

⇑

⇑

⇑

⇒ ⇒
s?
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Policy Simulation: Evaluation

I Base policy is static

I No mechansim to overcome weaknesses of base policy
(if there are no weaknesses, we don’t need policy simulation)

I Suboptimal decisions in simulation affect policy quality

I What about optimality in the limit?
⇒ in general not optimal due to inability of policy to improve
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G5.5 Sparse Sampling

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 11, 2019 39 / 45

G5. Asymptotically Suboptimal Monte-Carlo Methods Sparse Sampling

Sparse Sampling: Idea

Sparse Sampling (Kearns et al., 2002) approaches problem that
number of reachable states under a policy can be too large

I Creates search tree up to a given lookahead horizon

I A constant number of outcomes is sampled
for each state-action pair

I Outcomes that were not sampled are ignored

I Near-optimal: expected cost of resulting policy close to
expected cost of optimal policy

I Runtime independent from the number of states
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Sparse Sampling: Search Tree

Without Sparse Sampling
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Sparse Sampling: Search Tree

With Sparse Sampling
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Sparse Sampling: Problems

I Independent from number of states, but still
exponential in lookahead horizon

I Constants that give number of outcomes and lookahead
horizon large for good bounds on near-optimality

I Search time difficult to predict

I Search tree is symmetric
⇒ resources are wasted in non-promising parts of the tree
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G5.6 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 11, 2019 44 / 45



G5. Asymptotically Suboptimal Monte-Carlo Methods Summary

Summary

I Monte-Carlo methods have a long history
but no successful applications until 1990s

I Monte-Carlo methods use sampling and
backups that average over sample results

I Hindsight optimization averages over plan cost
in sampled determinization

I Policy simulation simulates the exection of a policy

I Sparse sampling considers only a fixed amount of outcomes

I All three methods are not optimal in the limit
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