Planning and Optimization G4. Heuristics for Probabilistic Planning

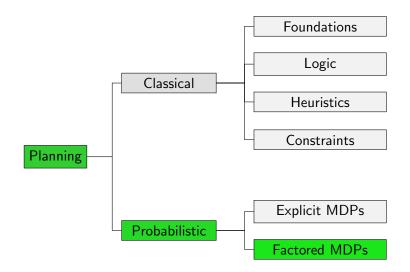
Malte Helmert and Thomas Keller

Universität Basel

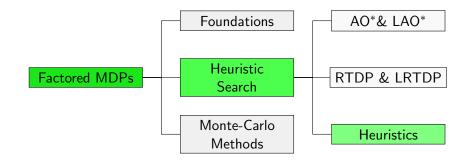
December 9, 2019

Motivation Determi			Summary
00 00000	00	00000000	00

Content of this Course



Content of this Course: Factored MDPs



Motivation	
00	

Determinization 0000000 Properties

Summary 00

Motivation

Heuristics

Heuristics for probabilistic planning

- most heuristics are based on domain-specific knowledge
- for a long time, determinization-based heuristics were the only notable domain-independent solution
- Recent progress: occupation measures (only covered in exercises)

Determinization ••••••

Properties

Summary 00

Determinization

What is a Determinization?

- Replace SSP operators with deterministic operators
- Results in classical planning task
- For SSPs, this is a classical planning task
- SSP and its determinization are related but not equivalent

How to Come up with a Determinization?

Typically, two types of determinization are distinguished:

- All-outcomes determinization
 - Create one deterministic transition to each outcome
- Single-outcome determinization
 - Pick one outcome of each probabilistic transition ...
 - ... and turn it into a deterministic transition
 - often, the most likely outcome is preserved
 - or one outcome is sampled according to its probability

Properties 000000000

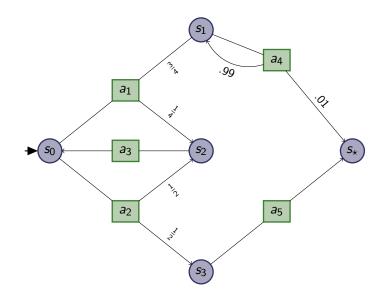
All-outcomes Determinizion

Definition (All-outcomes Determinization)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be an SSP. The all-outcomes determinization of T is the (deterministic) transition system $\mathcal{T}^d = \langle S, L^d, c, T^d, s_0, S_* \rangle$ with

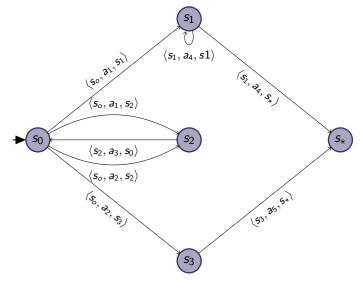
$$L^{d} = \{ \langle s, \ell, s' \rangle \mid s, s' \in S, \ell \in L \text{ and } T(s, \ell, s') > 0 \}$$
$$T^{d} = \{ \langle s, \ell^{d}, s' \rangle \mid \ell^{d} = \langle s, \ell, s' \rangle \in L^{d} \}.$$

All-outcomes Determinization: (Unit-cost) Example



All-outcomes Determinization: (Unit-cost) Example

Generate one action for each outcome



Single-outcome Determinization

Definition (Single-outcome Determinization)

Let $\mathcal{T} = \langle \textit{S},\textit{L},\textit{c},\textit{T},\textit{s}_{0},\textit{S}_{\star} \rangle$ be an SSP and let

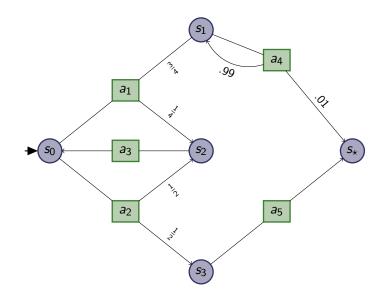
$$L^{aod} = \{ \langle s, \ell, s' \rangle \mid s, s' \in S, \ell \in L \text{ and } T(s, \ell, s') > 0 \}.$$

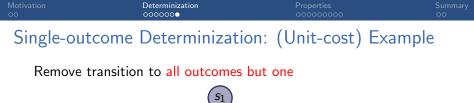
A (deterministic) transition system $T^d = \langle S, L^d, c, T^d, s_0, S_\star \rangle$ is a single-outcome determinization of T if

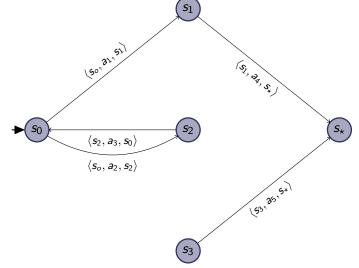
• $L^d \subseteq L^{aod}$ s.t. for all $s \in S$ and $\ell \in L(s)$ there is exactly one $\langle s, \ell, s' \rangle \in L^d$ and

$$T^{d} = \{ \langle s, \ell^{d}, s' \rangle \mid \ell^{d} = \langle s, \ell, s' \rangle \in L^{d} \}$$

Single-outcome Determinization: (Unit-cost) Example







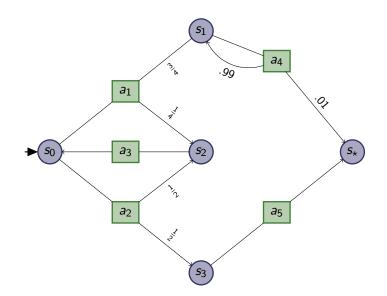
D				

Properties

Single-outcome Determinization: Properties

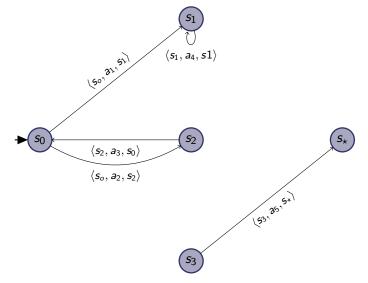
- single-outcome determinizations are not well-suited to be used as a heuristic:
 - can be inadmissible
 - and even unsafe

Single-outcome Determinization: Inadmissibility



Single-outcome Determinization: Inadmissibility

Remove transition to all outcomes but one



Single-outcome Determinization: Properties

- single-outcome determinizations are not well-suited to be used as a heuristic:
 - can be inadmissible
 - and even unsafe
- often part of domain-specific solutions

(e.g., by ignoring that some action may "fail")

 and as part of algorithms that average over several samples (Chapter G5)

Determinization	Properties	
	00000000	

Min-min Heuristic

Definition (Min-min Heuristic)

Let \mathcal{T} be an SSP and let \mathcal{T}^d be the all-outcomes determinization of \mathcal{T} . The min-min heuristic h_{\min} maps each state $s \in S$ to the cost of the cheapest path from s to a goal state in \mathcal{T}^d .

Motivation	Determinization	Properties	Summary
00	0000000	000000000	00
Min-min He	euristic: Admissibility		

Theorem (Admissibility)

The min-min heuristic is admissible.

Proof Sketch.

$$V^{\star}(s) \stackrel{(1)}{=} \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in S} T(s, \ell, s') \cdot V^{\star}(s')$$
$$\stackrel{(2)}{=} \min_{\ell \in L(s)} c(\ell) + \sum_{s' \in \operatorname{succ}(s, \ell)} T(s, \ell, s') \cdot V^{\star}(s')$$
$$\stackrel{(3)}{\geq} \min_{\ell \in L(s)} c(\ell) + \min_{s' \in \operatorname{succ}(s, \ell)} V^{\star}(s') = h_{\min}(s)$$

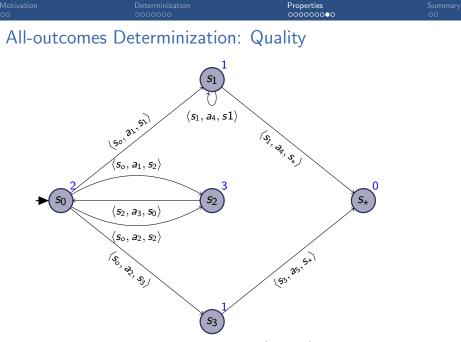
(1) is the Bellman equation, (2) holds because $T(s, \ell, s') = 0$ for all $s' \notin \operatorname{succ}(s, \ell)$ and (3) because the weight from more expensive outcomes is shifted to the cheapest one.

Min-min Heuristic: Properties

- The min-min heuristic is also called the optimistic heuristic ...
- ... because the planner may choose its preferred outcome
- Min-min heuristic can be well informed
- ... but can also be utterly optimistic



Annotation: probabilistic state-values (in red)



Annotation: deterministic state-values (in blue)

Min-min Heuristic: Properties

- The min-min heuristic is also called the optimistic heuristic ...
- ... because the planner may choose its preferred outcome
- Min-min heuristic can be well informed ...
- ... but can also be utterly optimistic
- Min-min heuristic often solvable in practice even if SSP is not
- If still unsolvable: compute classical heuristic of all-outcomes determinization

D			

Summary

Determinization	Summary
	00

Summary

- Almost all heuristics in probabilistic planning are either domain-specific or based on a determinization
- A single-outcome determinization removes all outcomes from a transition except for one
- The all-outcomes determinization creates a deterministic transition for each outcome
- The min-min heuristic computes the shortest path in the all-outcomes determinization
- The min-min heuristic is admissible