Planning and Optimization

G3. Real-time Dynamic Programming

Malte Helmert and Thomas Keller

Universitat Basel

December 9, 2019

Content of this Course

Foundations |

Logic |

—| Classical I—

Heuristics |

LT T 1

Constraints |

D Explicit MDPs |

Content of this Course: Factored MDPs

_{

Foundations

— AO*& LAO* |

Heuristic
Search

Monte-Carlo
Methods

| RTDP & LRTDP |

—{ Heuristics ‘

Motivation
®00

Motivation

Motivation

000 000000 0000000000

Comparison of Value Iteration and (L)AO

Value lteration and (L)AO* have different advantages:
m Both VI and (L)AO* compute optimal (executable) policy

m Admissible heuristic allows (L)AO* to restrict search to
“relevant” part of the search space.

m VI operates on state table, no need to build an explicit
representation of the search space
(lower memory requirement for the same search space)

Motivation

ooe

Real-time Dynamic Programming: ldea

Real-time Dynamic Programming (RTDP)
(Barto, Bradtke & Singh, 1995) combines these advantages:

m RTDP computes optimal (executable) policy

m RTDP uses an admissible heuristic to restrict search to
“relevant” part of the search space

m RTDP operates on a state hash table that is built during seach

RTDP
[Jelelelolo)

Real-time Dynamic Programming

RTDP
[o] YeloTole)

Real-time Dynamic Programming

RTDP updates only states relevant to the agent

Originally motivated from agent that acts in environment
by following greedy policy w.r.t. current state-value estimates.

Performs Bellman backup in each encountered state

Uses admissible heuristic for states not updated before

RTDP LR
00000

Trial-based Real-time Dynamic Programming

m We consider the offline version here.
= Interaction with environment is simulated in trials.

m In real world, outcome of action application cannot be chosen.
= In simulation, outcomes are sampled according to
probabilities.

Motivation RTDP

Summary
000®00 0000000000

Real-time Dynamic Programming

RTDP for SSP T
while more trials required:
S:=9
while s £ S,:
0(5) = minger(s) ((6) + Syes Tls,6,5) - V(5)
s :~ succ(s, ay(s))

Note: V/(s) is maintained as a hash table of states. On the right
hand side of line 4 or 5, if a state s is not in V, h(s) is used.

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 = = = Sx

3.00 | 2.00 | 1.00 | 0.00
4 vy

4.00 | 3.00 | 4.00 | 1.00

) .
3 500 | 400 | 3.00 | 2.00 Start of 1st trial
2 | M

6.00 | 5.00 | 4.00 | 3.00

S0

1 o)

7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 ey
4.00 | 3.00 | 4.00 | 1.00
3] Step 1
5.00 | 4.00 | 3.00 | 2.00
2 i)
6.00 | 5.00 | 4.00 | 3.00
S0
| O
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 ey
4.00 | 3.00 | 4.00 | 1.00
3] Step 2
5.00 | 4.00 | 3.00 | 2.00
2 |®n
6.60 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 ey
4.00 | 3.00 | 4.00 | 1.00
3 f Step 3
5.00 | 4.00 | 3.00 | 2.00
> |®n
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 ey
4.00 | 3.00 | 4.00 | 1.00
3 f Step 4
5.00 | 4.00 | 3.00 | 2.00
2 O
7.18 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 ey
4.00 | 3.00 | 4.00 | 1.00
3 'ﬁ Step 5
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 "ﬂ e
4.60 | 3.00 | 4.00 | 1.00
3 1) Step 6
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 "ﬂ e
4.96 | 3.00 | 4.00 | 1.00
3] Step 7
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 "ﬂ e
518 | 3.00 | 4.00 | 1.00
3 1) Step 8
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 |l= == S
3.00 | 2.00 | 1.00 | 0.00
4 "ﬂ e
531 | 3.00 | 4.00 | 1.00
3 1) Step 9
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 & | = | = Sk
3.60 | 2.00 | 1.00 | 0.00
4 ey
5.31 | 3.00 | 4.00 | 1.00
3 | M Step 10
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 & | = | = Sk
3.96 | 2.00 | 1.00 | 0.00
4 0000000
531 | 3.00 | 4.00 | 1.00
3 | M Step 11
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 & | = | = Sk
4.18 | 2.00 | 1.00 | 0.00
4 0000000
531 | 3.00 | 4.00 | 1.00
3 | M Step 12
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 & | = | = Sk
431 | 2.00 | 1.00 | 0.00
4 0000000
5.31 | 3.00 | 4.00 | 1.00
3 | 0 Step 13
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 | = (& | = Sk
4.31 | 2.00 | 1.00 | 0.00
4 ey
531 | 3.00 | 4.00 | 1.00
3 f Step 14
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 | = | = & Sk
4.31 | 2.00 | 1.00 | 0.00
4 ey
531 | 3.00 | 4.00 | 1.00
3 | M Step 15
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 | = | = | => @
4.31 | 2.00 | 1.00 | 0.00
4 0000000
531 | 3.00 | 4.00 | 1.00
3 | 0 Step 16
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
S0
1 f
7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 = | = | >

431 | 2.00 | 1.00 | 0.00
4 f B

5.31 | 3.00 | 4.00 | 1.00

f .

3 560 | 400 | 3.00 | 2.00 Start of 2nd trial
2 f

6.96 | 5.00 | 4.00 | 3.00
&

7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 = | = |@5
431 | 2.00 | 1.00 | 0.00
4 (s ey
5.31 | 3.00 | 4.00 | 1.00
3] End of 2nd trial
5.60 | 4.00 | 3.00 [2.00 | —"¢ 0T cnd tna
2 i

6.96 | 5.96 | 4.00 | 3.00

7.00 | 6.00 | 5.00 | 4.00

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 >

431 | 2.00 | 1.00 | 0.00
4 0000000

5.31 | 3.00 | 4.00 | 1.00

= | 1 :

3 1560 | 4.00 | 3.00 | 2.00 | Start of 3rd trial
2 f

6.96 | 5.96 | 4.00 | 3.00
1 .:>SO =

7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 . Sk
4.31 | 2.00 | 1.00 | 0.00
4 ety
5.31 | 3.00 | 4.00 | 1.60
3 560 | 400 | 3.00 | 3.43 End of 3rd trial
2 f
6.96 | 5.96 | 4.00 | 3.00
1 | =T =
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

5 = | = S
431 | 2.00 | 1.00 | 0.00
4 (s ey
531 | 3.00 | 7.92 | 2.38
3) End of 16th trial
6.18 | 4.00 | 5.00 | 4.80 nd of 16 ra
2 i
7.77 | 6.50 | 6.00 | 7.03
S0
1| ="

8.50 | 7.50 | 7.00 | 7.18

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP ; Summar
00000e 0000000000 0o

RTDP: Theoretical Properties

Using an admissible heuristic, RTDP converges to an optimal
solution without (necessarily) computing state-value estimates for
all states.

Proof omitted.

LRTDP
©000000000

Labeled Real-time Dynamic
Programming

LRTDP

0@00000000

Motivation

Issues of RTDP:

m States are still updated after state-value estimate
has converged.

m No termination criterion = algorithm is underspecified

Most popular algorithm to overcome these shortcomings:
Labeled RTDP (Bonet & Geffner, 2003)

LRTDP

0080000000

Labeled RTDP: Idea

The main idea of Labeled RDTP (LRTDP) is to
label states as solved
m Each trial terminates when solved state is encountered
= solved states no longer updated
m LRTDP terminates when the initial state is labeled as solved
= well-defined termination criterion

LRTDP

000@000000

Solved States in SSPs

m States are solved if the state-value estimate changes only little

m In presence of cycles, all states in strongly connected
component (SCC) are solved simultaneously

m Labeled RTDP uses sub-algorithm CheckSolved to check if
all states in a SCC are solved

LRTDP
0000800000

CheckSolved Procedure

m CheckSolved is called on all states that were encountered in
a trial in reverse order.

m CheckSolved checks how much the state-value estimates of
all states reachable under the greedy policy change and

m labels all those states as solved if the change is smaller than
some constant e.

m Otherwise, CheckSolved performs (additional) backup on
reachable states for faster convergence.

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

3

visited: sg ‘

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

3
visited: sp, 51 @

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

visited: sp, s1, S

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

visited: s, s1, 52, S3

Motivation s 2 LRTDP Summar
000000 0000080000 00

Labeled RTDP: Example (e = 0.005)

3
visited: sp, s1, S0, 53, 5> @

Motivation s 2 LRTDP Summar
000000 0000080000 00

Labeled RTDP: Example (e = 0.005)

1.22 3
visited: sg, s1, S2, 53, S0, S @
0.9 0.1

@.c0 =] [[

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

1.22 3
check_solved: sy, s1, S, S3, S2, S4 @
reachable: s,
0.9 0.1
@.c 5 [[

change of s4: 0

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

1.22 3
check_solved: sy, s1, S, S3, S2, S4 @
reachable: s,
label: s4 0.9 0.1
@, =] [[
0

change of s4: 0

Motivation N LRTDP Summar

Labeled RTDP: E

1.22 3
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: sy, s3,(s4)
0.9 0.1
@, =] [[

change of s: 0
change of s3: 0.02 e

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

1.222 3
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: sy, s3,(s4)
update: s3, 0.9 0.1
@ =] [[=]
0

2.22 2.2

Motivation N LRTDP Summar
0000080000

Labeled RTDP: Example (e = 0.005)

1.222 3
check_solved: sy, s1, 2, 53, 52, S4 @
reachable: s3, sy, (sa)
0.9 0.1
@, =] [[

change of s: 0

change of s3: 0.002 e
2.22 2.2

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

1.222 3
check_solved: sy, s1, 2, 53, 52, S4 @
reachable: s3, sy, (sa)
label: s, 53 0.9 0.1
@, =] [[
0

2.22 2.2

Motivation s 2 LRTDP Summar
000000 0000080000 00

Labeled RTDP: Example (e = 0.005)

1.222 3
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: (s)
0.9 0.1
@, =] [[

2.22 2.2

Motivation s 2 LRTDP Summar

Labeled RTDP: E

xample (e = 0.005)

1.222 3
check_solved: sy, s1, S, 53, 52, S4 @
reachable: sy, sp, (s2)
0.9 0.1
@, =] [[

change of so: 0.2
change of s;: 0.1998 e
2.22 2.2

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

1.222 3.2
check_solved: sy, s1, S, 53, 52, S4 @
reachable: sy, sp, (s2)
update: sp, 51 0.9 0.1
@, =] [[
0

2.22 2.4198

Motivation N LRTDP Summar
0000080000

Labeled RTDP: Example (e = 0.005)

1.222 3.2
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: s, s1, (s2)
0.9 0.1
@, =] [[

change of sp: 0.2198

change of s1: 0 e

2.22 2.4198

LRTDP
0000080000

Labeled RTDP: Example (e = 0.005)

1.222 3.4198
check_solved: sy, s1, 52, 53, 52, S4 @
reachable: s, s1, (s2)
update: s1, Sp 0.9 0.1
@, =] [[
0

2.22 2.4198

000000 0000008000

Labeled Real-time Dynamic Programming

Labeled RTDP for SSP T

while s is not solved:
ViSit(So)

Motivation N 2/ LRTDP Summary

| A\

visit state s
if s is solved or s € S,:
return
V(s) = minge(s) (€(0) + Syes T(s:6,8) - V()
s" i~ succ(s, ap(s))
visit(s’)
check_solved(s)

N

V(s) is maintained as a hash table of states. On the right hand
side of line 3 or 4 in visit(s), if a state s is not in V, h(s) is used.

Motivation 2 LRTDP Summary
[e]e]e 000000 0000000e00 [e]e)

Labeled RTDP: C

check_solved for SSP T

set ret := true, open, closed := stack
if sp not labeled then push sO to open
while open is not empty:
pop s from open and insert into closed
if change of s > ¢
ret := false
else push all s’ € succ(s, ay (s)) to open
that are not labeled and not in open or closed
if ret then label all s in closed as solved
else perform backup on all s in closed

RTDP LRTDP Summar
0000000080 oo

Motivation

Labeled RTDP: Theoretical Properties

Using an admissible heuristic, Labeled RTDP converges to an
optimal solution without (necessarily) computing state-value
estimates for all states.

Proof omitted.

Motivation .‘ 2/ LRTDP Summary
000 OO00O0C 000000000e [e]e)

Further RTDP Variants

Many variants exists, among them some interesting ones:
m Bounded RTDP (McMahan, Likhachev & Gordon, 2005)
m Focused RTDP (Smith & Simmons, 2006)
m Bayesian RTDP (Sanner et al., 2009)

[Je]

Summary

Summary

oe

Summary

m Real-time Dynamic Programming is
an optimal algorithm for SSPs . ..

m ... that backups only a subset of states ...

m ... without generating an explicit representation of the
state-space.

m Labeled RTDP labels states as solved to
stop updating converged states ...

m ... and speeds up convergence with additional backups
in reverse order.

	Motivation
	Real-time Dynamic Programming
	Labeled Real-time Dynamic Programming
	Summary

