
Planning and Optimization
G2. AO∗ & LAO∗

Malte Helmert and Thomas Keller

Universität Basel

December 4, 2019



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

AO∗& LAO∗

RTDP & LRTDP

Heuristics
Monte-Carlo

Methods



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Heuristic Search



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Reminder: Heuristic Search

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the AI course last semester)



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Reminder: Best-first Search

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

(From Lecture 15 of the AI course last semester)



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Reminder: A∗Search

A∗Search

A∗ is the best-first search algorithm with evaluation function
f (n) = g(n) + h(n.state).

(From Lecture 16 of the AI course last semester)



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ Search (With Reopening): Example

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
0 + 18

s1
8 + 12

s2
5 + 14

s5
15 + 4

s6

23 + 0

s3
18 + 12

s4
16 + 6

s5
12 + 4

s6

20 + 0

8 5

10
8 4 10

88



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ Search (With Reopening): Example

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
0 + 18

s1
8 + 12

s2
5 + 14

s5
15 + 4

s6

23 + 0

s3
18 + 12

s4
16 + 6

s5
12 + 4

s6

20 + 0

8 5

10
8 4 10

88



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Motivation



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

From A∗to AO∗

equivalent of A∗ for (acyclic) SSPs is AO∗

the generalization is not straightforward:

A∗ always expands most promising state
it uses g(n) as cost from root n0 to n
Can we replace this in SSPs with expected cost from n0 to n?

Is expected cost from n0 to n given n is reached an alternative?



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Expected Cost to Reach State

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf?
Answer: undefined, as neither of them is reached with probability 1

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Expected Cost to Reach State

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf?
Answer: undefined, as neither of them is reached with probability 1

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

From A∗to AO∗

equivalent of A∗ for (acyclic) SSPs is AO∗

the generalization is not straightforward:

A∗ always expands most promising state
it uses g(n) as cost from root n0 to n
Can we replace this in AO∗ with expected cost from n0 to n?
Is expected cost from n0 to n given n is reached an alternative?



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf given it’s reached?
Answer: 1 for all, so s2 is expanded due to minimal f value

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf given it’s reached?
Answer: 1 for all, so s2 is expanded due to minimal f value

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf given it’s reached?
Answer: 1 for all, so s2 is expanded due to minimal f value

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Expansion in Best Solution Graph

Instead of expanding the state with minimal f -value,
AO∗ exploits a different idea:

AO∗ keeps track of best solution graph

AO∗ expands a state that can be reached from s0
by only applying greedy actions

⇒ no g -value equivalent required



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Outlook

Equivalent version of A∗ built on this idea can be derived
⇒ A∗ with backward induction

Since change is non-trivial, we focus on A∗ variant now

and generalize later to acyclic SSPs (AO∗)

and SSPs with cycles (LAO∗)



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with Backward Induction



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Transition Systems

A∗ with backward induction distinguishes three transition systems:

The transition system T = 〈S , L, c ,T , s0,S
?〉

⇒ given implicitly

The explicated graph T̂t = 〈Ŝt , L, c , T̂t , s0, S
?〉

⇒ the part of T explicitly considered during search

The partial solution graph T̂ ?
t = 〈Ŝ?

t , L, c , T̂
?
t , s0, S

?〉
⇒ The part of T̂t that contains best solution

s0 TT̂tT̂ ?
t



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Explicated Graph

Expanding a state s at time step t explicates all successors
s ′ ∈ succ(s) by adding them to explicated graph:

T̂t = 〈Ŝt−1 ∪ succ(s), L, c , T̂t−1 ∪ {〈s, `, s ′〉 ∈ T}, s0,S?}

Each explicated state is annotated with state-value estimate
V̂t(s) that describes estimated cost to a goal at time step t

When state s ′ is explicated and s ′ /∈ Ŝt−1, its state-value
estimate is initialized to V̂t(s

′) := h(s ′)

We call leaf states of T̂t fringe states



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Partial Solution Graph

The partial solution graph T̂ ?
t is the subgraph of T̂t that is

spanned by the smallest set of states Ŝ?
t that satisfies:

s0 ∈ Ŝ?
t

if s ∈ Ŝ?
t , s ′ ∈ Ŝt and 〈s, aV̂t(s)

(s), s ′〉 ∈ T̂t , then s ′ in Ŝ?
t

The partial solution graph forms a sequence of states
〈s0, . . . , sn〉, starting with the initial state s0 and ending in the
greedy fringe state sn



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Backward Induction

A∗ with backward induction does not maintain static open list

State-value estimates determine partial solution graph

Partial solution graph determines which state is expanded

(Some) state-value estimates are updated in time step t by
backward induction:

V̂t(s) = min
〈s,`,s′〉∈T̂t(s)

(
c(`) + V̂t(s

′)
)



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

A∗ with backward induction for classical planning task T
explicate s0
while greedy fringe state s /∈ S?:

expand s
perform backward induction of states in T̂ ?

t−1 in reverse order

return T̂ ?
t



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0

s0

18

s1
12

s2
141818

s3
12

s4
6

s5
88

s6
00

88 55

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0

s0

19

s1

s1

12
s2

s2

14

1818

s3
12

s4
6

s5
88

s6
00

8

8

5

5

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
19

s1

s1

12
s2

s2

14

1818

s3
12

s4
6

s5

s5

4

88

s6
00

8

8

5

5

10

8
4

10

8



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1

s1

12
s2

14

18

18

s3
12

s4
6

s5

s5

8

88

s6
0

00

8

8

5

5

10

8
4

10

8



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1

s1

12
s2

1418

18

s3
12

s4
6

s5
8

8

s6
0

0

8

8

5

5

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1
12

s2

1418

18

s3
12

s4
6

s5

8

8

s6s6

0

0

8

8

5

5

10

8
4 10

8



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Equivalence of A∗ and A∗ with Backward Induction

Theorem

A∗ and A∗ with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.

The proof shows that

the fringe states of the explicated graph A∗ with backward
induction correspond to the states in the open list of A∗

the f -value of the greedy fringe state of A∗ with backward
induction is minimal among all fringe states



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

AO∗



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

From A∗ with Backward Induction to AO∗

A∗ with backward induction already very similar to AO∗, only
support for uncertain outcomes missing. Need to adapt:

Which states are explicated upon expansion?
⇒ all outcomes

Which form does the partial solution graph have?
⇒ a partial acyclic policy

Which state is selected for expansion?
⇒ any greedy fringe state
(e.g., the state that is most likely reached)

How are states updated?
⇒ by applying Bellman equation as update rule

When does the algorithm terminate?
⇒ when all states in the greedy fringe are goal states



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

AO∗

AO∗ for acyclic SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform Bellman backups of states in T̂ ?

t−1 in reverse order

return T̂ ?
t



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

AO∗: Example (Blackboard)

s0

5

a1

a2

s1

10

s2

6

s3
3

a3

a4

a5

a6

s4

s5
3

s6

s7

4

a7

a8

s8

1

1

.5

.5

.25

.75

12

12

1

2

.8

.2

.5

.5

5

4

h(s) = 0 for goal states, otherwise in blue above or below s



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Theoretical properties

Theorem

Using an admissible heuristic, AO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

LAO∗



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

LAO∗

A∗ with backward induction finds sequential solutions (a plan)
in classical planning tasks

AO∗ finds acyclic solutions with branches (an acyclic policy)
in acyclic SSPs

LAO∗ is the generalization of AO∗ to cyclic solutions in cyclic
SSPs



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

From AO∗ to LAO∗

From plans to acyclic policies, we only changed backup
procedure to consider transition probabilities

When solutions may be cyclic, we cannot order states in a way
that guarantees that all successors have been updated before

We need an iterative process to perform backups

the original algorithm of Hansen & Zilberstein (1998) uses
Policy Iteration



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

LAO∗

LAO∗ for SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform policy iteration in T̂t

return T̂ ?
t



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

LAO∗: Optimizations

Several optimizations for LAO∗ have been proposed:

Use Value Iteration instead of PI

Terminate VI when the partial solution graph changes

Expand all states in greedy fringe before backup

Order states (arbitrarily within cycles) and use backward
induction for updates

⇒ last two combine to famous variant iLAO∗



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Theoretical properties

Theorem

Using an admissible heuristic, LAO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Summary



Heuristic Search Motivation A∗ with Backward Induction AO∗ LAO∗ Summary

Summary

Non-trivial to generalize A∗ to probabilistic planning

For better understanding of AO∗, we change A∗ towards AO∗

Derived A∗ with backward induction, which is similar to AO∗

and expands identical states as A∗

AO∗ finds optimal solutions for acyclic SSPs

LAO∗ finds optimal solutions for SSPs


	Heuristic Search
	

	Motivation
	

	A* with Backward Induction
	

	AO*
	

	LAO*
	

	Summary
	


