
Planning and Optimization
G2. AO∗ & LAO∗

Malte Helmert and Thomas Keller

Universität Basel

December 4, 2019

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 1 / 43

Planning and Optimization
December 4, 2019 — G2. AO∗ & LAO∗

G2.1 Heuristic Search

G2.2 Motivation

G2.3 A∗ with Backward Induction

G2.4 AO∗

G2.5 LAO∗

G2.6 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 2 / 43

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 3 / 43

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

AO∗& LAO∗

RTDP & LRTDP

Heuristics
Monte-Carlo

Methods

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 4 / 43



G2. AO∗ & LAO∗ Heuristic Search

G2.1 Heuristic Search
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G2. AO∗ & LAO∗ Heuristic Search

Reminder: Heuristic Search

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the AI course last semester)
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G2. AO∗ & LAO∗ Heuristic Search

Reminder: Best-first Search

Best-first Search
A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

(From Lecture 15 of the AI course last semester)
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G2. AO∗ & LAO∗ Heuristic Search

Reminder: A∗Search

A∗Search

A∗ is the best-first search algorithm with evaluation function
f (n) = g(n) + h(n.state).

(From Lecture 16 of the AI course last semester)
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G2. AO∗ & LAO∗ Heuristic Search

A∗ Search (With Reopening): Example
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G2. AO∗ & LAO∗ Motivation

G2.2 Motivation
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G2. AO∗ & LAO∗ Motivation

From A∗to AO∗

I equivalent of A∗ for (acyclic) SSPs is AO∗

I the generalization is not straightforward:

I A∗ always expands most promising state
I it uses g(n) as cost from root n0 to n
I Can we replace this in SSPs with expected cost from n0 to n?

I Is expected cost from n0 to n given n is reached an alternative?
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G2. AO∗ & LAO∗ Motivation

Expected Cost to Reach State

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1
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h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf?
Answer: undefined, as neither of them is reached with probability 1

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.
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From A∗to AO∗

I equivalent of A∗ for (acyclic) SSPs is AO∗

I the generalization is not straightforward:

I A∗ always expands most promising state
I it uses g(n) as cost from root n0 to n
I Can we replace this in AO∗ with expected cost from n0 to n?
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G2. AO∗ & LAO∗ Motivation

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf given it’s reached?
Answer: 1 for all, so s2 is expanded due to minimal f value

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.
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G2. AO∗ & LAO∗ Motivation

Expansion in Best Solution Graph

Instead of expanding the state with minimal f -value,
AO∗ exploits a different idea:

I AO∗ keeps track of best solution graph

I AO∗ expands a state that can be reached from s0
by only applying greedy actions

I ⇒ no g -value equivalent required
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G2. AO∗ & LAO∗ Motivation

Outlook

I Equivalent version of A∗ built on this idea can be derived
⇒ A∗ with backward induction

I Since change is non-trivial, we focus on A∗ variant now

I and generalize later to acyclic SSPs (AO∗)

I and SSPs with cycles (LAO∗)
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G2. AO∗ & LAO∗ A∗ with Backward Induction

G2.3 A∗ with Backward Induction
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G2. AO∗ & LAO∗ A∗ with Backward Induction

Transition Systems

A∗ with backward induction distinguishes three transition systems:

I The transition system T = 〈S , L, c ,T , s0,S
?〉

⇒ given implicitly

I The explicated graph T̂t = 〈Ŝt , L, c , T̂t , s0, S
?〉

⇒ the part of T explicitly considered during search

I The partial solution graph T̂ ?
t = 〈Ŝ?

t , L, c , T̂
?
t , s0, S

?〉
⇒ The part of T̂t that contains best solution

s0 TT̂tT̂ ?
t
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G2. AO∗ & LAO∗ A∗ with Backward Induction

Explicated Graph

I Expanding a state s at time step t explicates all successors
s ′ ∈ succ(s) by adding them to explicated graph:

T̂t = 〈Ŝt−1 ∪ succ(s), L, c , T̂t−1 ∪ {〈s, `, s ′〉 ∈ T}, s0,S?}

I Each explicated state is annotated with state-value estimate
V̂t(s) that describes estimated cost to a goal at time step t

I When state s ′ is explicated and s ′ /∈ Ŝt−1, its state-value
estimate is initialized to V̂t(s

′) := h(s ′)

I We call leaf states of T̂t fringe states
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G2. AO∗ & LAO∗ A∗ with Backward Induction

Partial Solution Graph

I The partial solution graph T̂ ?
t is the subgraph of T̂t that is

spanned by the smallest set of states Ŝ?
t that satisfies:

I s0 ∈ Ŝ?
t

I if s ∈ Ŝ?
t , s ′ ∈ Ŝt and 〈s, aV̂t(s)

(s), s ′〉 ∈ T̂t , then s ′ in Ŝ?
t

I The partial solution graph forms a sequence of states
〈s0, . . . , sn〉, starting with the initial state s0 and ending in the
greedy fringe state sn
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G2. AO∗ & LAO∗ A∗ with Backward Induction

Backward Induction

I A∗ with backward induction does not maintain static open list

I State-value estimates determine partial solution graph

I Partial solution graph determines which state is expanded

I (Some) state-value estimates are updated in time step t by
backward induction:

V̂t(s) = min
〈s,`,s′〉∈T̂t(s)

(
c(`) + V̂t(s

′)
)
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G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

A∗ with backward induction for classical planning task T
explicate s0
while greedy fringe state s /∈ S?:

expand s
perform backward induction of states in T̂ ?

t−1 in reverse order

return T̂ ?
t
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G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction
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A∗ with backward induction
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G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction
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G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction
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G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction
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G2. AO∗ & LAO∗ A∗ with Backward Induction

Equivalence of A∗ and A∗ with Backward Induction

Theorem

A∗ and A∗ with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.
The proof shows that

I the fringe states of the explicated graph A∗ with backward
induction correspond to the states in the open list of A∗

I the f -value of the greedy fringe state of A∗ with backward
induction is minimal among all fringe states
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G2. AO∗ & LAO∗ AO∗

G2.4 AO∗
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G2. AO∗ & LAO∗ AO∗

From A∗ with Backward Induction to AO∗

A∗ with backward induction already very similar to AO∗, only
support for uncertain outcomes missing. Need to adapt:

I Which states are explicated upon expansion?
⇒ all outcomes

I Which form does the partial solution graph have?
⇒ a partial acyclic policy

I Which state is selected for expansion?
⇒ any greedy fringe state
(e.g., the state that is most likely reached)

I How are states updated?
⇒ by applying Bellman equation as update rule

I When does the algorithm terminate?
⇒ when all states in the greedy fringe are goal states
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G2. AO∗ & LAO∗ AO∗

AO∗

AO∗ for acyclic SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform Bellman backups of states in T̂ ?

t−1 in reverse order

return T̂ ?
t
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G2. AO∗ & LAO∗ AO∗

AO∗: Example (Blackboard)
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h(s) = 0 for goal states, otherwise in blue above or below s
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G2. AO∗ & LAO∗ AO∗

Theoretical properties

Theorem

Using an admissible heuristic, AO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.
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G2. AO∗ & LAO∗ LAO∗

G2.5 LAO∗
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G2. AO∗ & LAO∗ LAO∗

LAO∗

I A∗ with backward induction finds sequential solutions (a plan)
in classical planning tasks

I AO∗ finds acyclic solutions with branches (an acyclic policy)
in acyclic SSPs

I LAO∗ is the generalization of AO∗ to cyclic solutions in cyclic
SSPs
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G2. AO∗ & LAO∗ LAO∗

From AO∗ to LAO∗

I From plans to acyclic policies, we only changed backup
procedure to consider transition probabilities

I When solutions may be cyclic, we cannot order states in a way
that guarantees that all successors have been updated before

I We need an iterative process to perform backups

I the original algorithm of Hansen & Zilberstein (1998) uses
Policy Iteration
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G2. AO∗ & LAO∗ LAO∗

LAO∗

LAO∗ for SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform policy iteration in T̂t

return T̂ ?
t
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G2. AO∗ & LAO∗ LAO∗

LAO∗: Optimizations

Several optimizations for LAO∗ have been proposed:

I Use Value Iteration instead of PI

I Terminate VI when the partial solution graph changes

I Expand all states in greedy fringe before backup

I Order states (arbitrarily within cycles) and use backward
induction for updates

⇒ last two combine to famous variant iLAO∗
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G2. AO∗ & LAO∗ LAO∗

Theoretical properties

Theorem

Using an admissible heuristic, LAO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.
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G2. AO∗ & LAO∗ Summary

G2.6 Summary
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G2. AO∗ & LAO∗ Summary

Summary

I Non-trivial to generalize A∗ to probabilistic planning

I For better understanding of AO∗, we change A∗ towards AO∗

I Derived A∗ with backward induction, which is similar to AO∗

I and expands identical states as A∗

I AO∗ finds optimal solutions for acyclic SSPs

I LAO∗ finds optimal solutions for SSPs
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