
Planning and Optimization
G2. AO∗ & LAO∗

Malte Helmert and Thomas Keller

Universität Basel

December 4, 2019

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 1 / 43

Planning and Optimization
December 4, 2019 — G2. AO∗ & LAO∗

G2.1 Heuristic Search

G2.2 Motivation

G2.3 A∗ with Backward Induction

G2.4 AO∗

G2.5 LAO∗

G2.6 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 2 / 43

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 3 / 43

Content of this Course: Factored MDPs

Factored MDPs

Foundations

Heuristic
Search

AO∗& LAO∗

RTDP & LRTDP

Heuristics
Monte-Carlo

Methods

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 4 / 43



G2. AO∗ & LAO∗ Heuristic Search

G2.1 Heuristic Search

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 5 / 43

G2. AO∗ & LAO∗ Heuristic Search

Reminder: Heuristic Search

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

(From Lecture 15 of the AI course last semester)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 6 / 43

G2. AO∗ & LAO∗ Heuristic Search

Reminder: Best-first Search

Best-first Search
A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

(From Lecture 15 of the AI course last semester)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 7 / 43

G2. AO∗ & LAO∗ Heuristic Search

Reminder: A∗Search

A∗Search

A∗ is the best-first search algorithm with evaluation function
f (n) = g(n) + h(n.state).

(From Lecture 16 of the AI course last semester)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 8 / 43



G2. AO∗ & LAO∗ Heuristic Search

A∗ Search (With Reopening): Example

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
0 + 18

s1
8 + 12

s2
5 + 14

s5
15 + 4

s6

23 + 0

s3
18 + 12

s4
16 + 6

s5
12 + 4

s6

20 + 0

8 5

10
8 4 10

88

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 9 / 43

G2. AO∗ & LAO∗ Heuristic Search

A∗ Search (With Reopening): Example

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
0 + 18

s1
8 + 12

s2
5 + 14

s5
15 + 4

s6

23 + 0

s3
18 + 12

s4
16 + 6

s5
12 + 4

s6

20 + 0

8 5

10
8 4 10

88

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 10 / 43

G2. AO∗ & LAO∗ Motivation

G2.2 Motivation

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 11 / 43

G2. AO∗ & LAO∗ Motivation

From A∗to AO∗

I equivalent of A∗ for (acyclic) SSPs is AO∗

I the generalization is not straightforward:

I A∗ always expands most promising state
I it uses g(n) as cost from root n0 to n
I Can we replace this in SSPs with expected cost from n0 to n?

I Is expected cost from n0 to n given n is reached an alternative?

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 12 / 43



G2. AO∗ & LAO∗ Motivation

Expected Cost to Reach State

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf?
Answer: undefined, as neither of them is reached with probability 1

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 13 / 43

G2. AO∗ & LAO∗ Motivation

From A∗to AO∗

I equivalent of A∗ for (acyclic) SSPs is AO∗

I the generalization is not straightforward:

I A∗ always expands most promising state
I it uses g(n) as cost from root n0 to n
I Can we replace this in AO∗ with expected cost from n0 to n?
I Is expected cost from n0 to n given n is reached an alternative?

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 14 / 43

G2. AO∗ & LAO∗ Motivation

Expected Cost to Reach State Given It Is Reached

Consider the following expansion of state s0:

s0

a0 a1

s1

h(s1) = 100

s2

h(s2) = 1

s3

h(s3) = 2

s4

h(s4) = 2

1 1

.99 .01 .5 .5

What is the expected cost to reach each leaf given it’s reached?
Answer: 1 for all, so s2 is expanded due to minimal f value

Is expanding a successor of a0 a “most promising” choice?
Answer: No, because it’s likely that s1 is reached if a0 is applied.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 15 / 43

G2. AO∗ & LAO∗ Motivation

Expansion in Best Solution Graph

Instead of expanding the state with minimal f -value,
AO∗ exploits a different idea:

I AO∗ keeps track of best solution graph

I AO∗ expands a state that can be reached from s0
by only applying greedy actions

I ⇒ no g -value equivalent required

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 16 / 43



G2. AO∗ & LAO∗ Motivation

Outlook

I Equivalent version of A∗ built on this idea can be derived
⇒ A∗ with backward induction

I Since change is non-trivial, we focus on A∗ variant now

I and generalize later to acyclic SSPs (AO∗)

I and SSPs with cycles (LAO∗)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 17 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

G2.3 A∗ with Backward Induction

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 18 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

Transition Systems

A∗ with backward induction distinguishes three transition systems:

I The transition system T = 〈S , L, c ,T , s0,S
?〉

⇒ given implicitly

I The explicated graph T̂t = 〈Ŝt , L, c , T̂t , s0, S
?〉

⇒ the part of T explicitly considered during search

I The partial solution graph T̂ ?
t = 〈Ŝ?

t , L, c , T̂
?
t , s0, S

?〉
⇒ The part of T̂t that contains best solution

s0 TT̂tT̂ ?
t

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 19 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

Explicated Graph

I Expanding a state s at time step t explicates all successors
s ′ ∈ succ(s) by adding them to explicated graph:

T̂t = 〈Ŝt−1 ∪ succ(s), L, c , T̂t−1 ∪ {〈s, `, s ′〉 ∈ T}, s0,S?}

I Each explicated state is annotated with state-value estimate
V̂t(s) that describes estimated cost to a goal at time step t

I When state s ′ is explicated and s ′ /∈ Ŝt−1, its state-value
estimate is initialized to V̂t(s

′) := h(s ′)

I We call leaf states of T̂t fringe states

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 20 / 43



G2. AO∗ & LAO∗ A∗ with Backward Induction

Partial Solution Graph

I The partial solution graph T̂ ?
t is the subgraph of T̂t that is

spanned by the smallest set of states Ŝ?
t that satisfies:

I s0 ∈ Ŝ?
t

I if s ∈ Ŝ?
t , s ′ ∈ Ŝt and 〈s, aV̂t(s)

(s), s ′〉 ∈ T̂t , then s ′ in Ŝ?
t

I The partial solution graph forms a sequence of states
〈s0, . . . , sn〉, starting with the initial state s0 and ending in the
greedy fringe state sn

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 21 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

Backward Induction

I A∗ with backward induction does not maintain static open list

I State-value estimates determine partial solution graph

I Partial solution graph determines which state is expanded

I (Some) state-value estimates are updated in time step t by
backward induction:

V̂t(s) = min
〈s,`,s′〉∈T̂t(s)

(
c(`) + V̂t(s

′)
)

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 22 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

A∗ with backward induction for classical planning task T
explicate s0
while greedy fringe state s /∈ S?:

expand s
perform backward induction of states in T̂ ?

t−1 in reverse order

return T̂ ?
t

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 23 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0

s0

18

s1
12

s2
141818

s3
12

s4
6

s5
88

s6
00

88 55

10

8
4 10

8

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 24 / 43



G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0

s0

19

s1

s1

12
s2

s2

14

1818

s3
12

s4
6

s5
88

s6
00

8

8

5

5

10

8
4 10

8

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 25 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
19

s1

s1

12
s2

s2

14

1818

s3
12

s4
6

s5

s5

4

88

s6
00

8

8

5

5

10

8
4

10

8

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 26 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1

s1

12
s2

14

18

18

s3
12

s4
6

s5

s5

8

88

s6
0

00

8

8

5

5

10

8
4

10

8

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 27 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1

s1

12
s2

1418

18

s3
12

s4
6

s5
8

8

s6
0

0

8

8

5

5

10

8
4 10

8

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 28 / 43



G2. AO∗ & LAO∗ A∗ with Backward Induction

A∗ with backward induction

s0
18

s1
12

s2
14

s3
12

s4
6

s5
4

s6
0

8 5

10

8
4 10

6

8
8

s0
20

s1
12

s2

1418

18

s3
12

s4
6

s5

8

8

s6s6

0

0

8

8

5

5

10

8
4 10

8

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 29 / 43

G2. AO∗ & LAO∗ A∗ with Backward Induction

Equivalence of A∗ and A∗ with Backward Induction

Theorem

A∗ and A∗ with Backward Induction expand the same set of states
if run with identical admissible heuristic h and identical
tie-breaking criterion.

Proof Sketch.
The proof shows that

I the fringe states of the explicated graph A∗ with backward
induction correspond to the states in the open list of A∗

I the f -value of the greedy fringe state of A∗ with backward
induction is minimal among all fringe states

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 30 / 43

G2. AO∗ & LAO∗ AO∗

G2.4 AO∗

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 31 / 43

G2. AO∗ & LAO∗ AO∗

From A∗ with Backward Induction to AO∗

A∗ with backward induction already very similar to AO∗, only
support for uncertain outcomes missing. Need to adapt:

I Which states are explicated upon expansion?
⇒ all outcomes

I Which form does the partial solution graph have?
⇒ a partial acyclic policy

I Which state is selected for expansion?
⇒ any greedy fringe state
(e.g., the state that is most likely reached)

I How are states updated?
⇒ by applying Bellman equation as update rule

I When does the algorithm terminate?
⇒ when all states in the greedy fringe are goal states

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 32 / 43



G2. AO∗ & LAO∗ AO∗

AO∗

AO∗ for acyclic SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform Bellman backups of states in T̂ ?

t−1 in reverse order

return T̂ ?
t

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 33 / 43

G2. AO∗ & LAO∗ AO∗

AO∗: Example (Blackboard)

s0

5

a1

a2

s1

10

s2

6

s3
3

a3

a4

a5

a6

s4

s5
3

s6

s7

4

a7

a8

s8

1

1

.5

.5

.25

.75

12

12

1

2

.8

.2

.5

.5

5

4

h(s) = 0 for goal states, otherwise in blue above or below s

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 34 / 43

G2. AO∗ & LAO∗ AO∗

Theoretical properties

Theorem

Using an admissible heuristic, AO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 35 / 43

G2. AO∗ & LAO∗ LAO∗

G2.5 LAO∗

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 36 / 43



G2. AO∗ & LAO∗ LAO∗

LAO∗

I A∗ with backward induction finds sequential solutions (a plan)
in classical planning tasks

I AO∗ finds acyclic solutions with branches (an acyclic policy)
in acyclic SSPs

I LAO∗ is the generalization of AO∗ to cyclic solutions in cyclic
SSPs

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 37 / 43

G2. AO∗ & LAO∗ LAO∗

From AO∗ to LAO∗

I From plans to acyclic policies, we only changed backup
procedure to consider transition probabilities

I When solutions may be cyclic, we cannot order states in a way
that guarantees that all successors have been updated before

I We need an iterative process to perform backups

I the original algorithm of Hansen & Zilberstein (1998) uses
Policy Iteration

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 38 / 43

G2. AO∗ & LAO∗ LAO∗

LAO∗

LAO∗ for SSP T
explicate s0
while there is a greedy fringe state not in S?:

select a greedy fringe state s /∈ S?
expand s
perform policy iteration in T̂t

return T̂ ?
t

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 39 / 43

G2. AO∗ & LAO∗ LAO∗

LAO∗: Optimizations

Several optimizations for LAO∗ have been proposed:

I Use Value Iteration instead of PI

I Terminate VI when the partial solution graph changes

I Expand all states in greedy fringe before backup

I Order states (arbitrarily within cycles) and use backward
induction for updates

⇒ last two combine to famous variant iLAO∗

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 40 / 43



G2. AO∗ & LAO∗ LAO∗

Theoretical properties

Theorem

Using an admissible heuristic, LAO∗ converges to an optimal
solution without (necessarily) explicating all states.

Proof omitted.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 41 / 43

G2. AO∗ & LAO∗ Summary

G2.6 Summary

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 42 / 43

G2. AO∗ & LAO∗ Summary

Summary

I Non-trivial to generalize A∗ to probabilistic planning

I For better understanding of AO∗, we change A∗ towards AO∗

I Derived A∗ with backward induction, which is similar to AO∗

I and expands identical states as A∗

I AO∗ finds optimal solutions for acyclic SSPs

I LAO∗ finds optimal solutions for SSPs

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 43 / 43


	Heuristic Search
	

	Motivation
	

	A* with Backward Induction
	

	AO*
	

	LAO*
	

	Summary
	


