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Factored MDPs

We would like to specify MDPs and SSPs with large state spaces.
In classical planning, we introduced planning tasks to represent
large transition systems compactly.

I represent aspects of the world in terms of state variables

I states are a valuation of state variables

I n state variables induce 2n states
 exponentially more compact than “explicit” representation
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Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v ∈ V and d ∈ dom(v).

For simplicity, we only consider finite-domain state variables here.
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Syntax of Operators

Definition (SSP and MDP Operators)

An SSP operator o over state variables V is an MDP operator
with three properties:

I a precondition pre(o), a logical formula over V

I an effect eff(o) over V , defined on the following slides

I a cost cost(o) ∈ R+
0

An MDP operator o over state variables V is an object
with three properties:

I a precondition pre(o), a logical formula over V

I an effect eff(o) over V , defined on the following slides

I a reward reward(o) over V , defined on the following slides

Whenever we just say operator (without SSP or MDP),
both kinds of operators are allowed.
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Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

I If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

I If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

I If e1, . . . , en are effects and p1, . . . , pn ∈ [0, 1] such that∑n
i=1 pi = 1, then (p1 : e1| . . . |pn : en) is an effect

(probabilistic effect).

Note: To simplify definitions, conditional effects are omitted.
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Effects: Intuition

Intuition for effects:

I Atomic effects can be understood as assignments
that update the value of a state variable.

I A conjunctive effect e = (e1 ∧ · · · ∧ en) means that
all subeffects e1, . . . , en take place simultaneously.

I A probabilistic effect e = (p1 : e1| . . . |pn : en) means that
exactly one subeffect ei ∈ {e1, . . . , en} takes place with
probability pi .
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Semantics of Effects

Definition

The effect set [e] of an effect e is a set of pairs 〈p,w〉, where p is
a probability 0 < p ≤ 1 and w is a partial assignment. The effect
set [e] is the set obtained recursively as

[v := d ] = {〈1.0, {v 7→ d}〉},

[e ∧ e ′] =
⊎

〈p,w〉∈[e]

⊎
〈p′,w ′〉∈[e′]

{〈p · p′,w ∪ w ′〉},

[p1 : e1| . . . |pn : en] =
n⊎

i=1

{〈pi · p,w〉 | 〈p,w〉 ∈ [ei ]}.

where
⊎

is like
⋃

but merges 〈p,w ′〉 and 〈p′,w ′〉 to 〈p + p′,w ′〉.
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Semantics of Operators

Definition (Applicable, Outcomes)

Let V be a set of finite-domain state variables.
Let s be a state over V , and let o be an operator over V .
Operator o is applicable in s if s |= pre(o).

The outcomes of applying an operator o in s, written sJoK, are

sJoK =
⊎

〈p,w〉∈[eff(o)]

{〈p, s ′w 〉},

with s ′w (v) = d if v = d ∈ w and s ′w (v) = s(v) otherwise
and

⊎
is like

⋃
but merges 〈p, s ′〉 and 〈p′, s ′〉 to 〈p + p′, s ′〉.
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Rewards

Definition (Reward)

A reward over state variables V is inductively defined as follows:

I c ∈ R is a reward

I If χ is a propositional formula over V , [χ] is a reward

I If r and r ′ are rewards, r + r ′, r − r ′, r · r ′ and r
r ′ are rewards

Applying an MDP operator o in s induces reward reward(o)(s),
i.e., the value of the arithmetic function reward(o) where all
occurrences of v ∈ V are replaced with s(v).
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Probabilistic Planning Tasks

Definition (SSP and MDP Planning Task)

An SSP planning task is a 4-tuple Π = 〈V , I ,O, γ〉 where

I V is a finite set of finite-domain state variables,

I I is a valuation over V called the initial state,

I O is a finite set of SSP operators over V , and

I γ is a formula over V called the goal.

An MDP planning task is a 4-tuple Π = 〈V , I ,O, d〉 where

I V is a finite set of finite-domain state variables,

I I is a valuation over V called the initial state,

I O is a finite set of MDP operators over V , and

I d ∈ (0, 1) is the discount factor.

A probabilistic planning task is an SSP or MDP planning task.
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Mapping SSP Planning Tasks to SSPs

Definition (SSP Induced by an SSP Planning Task)

The SSP planning task Π = 〈V , I ,O, γ〉 induces
the SSP T = 〈S , L, c ,T , s0, S?〉, where

I S is the set of all states over V ,

I L is the set of operators O,

I c(o) = cost(o) for all o ∈ O,

I T (s, o, s ′) =

{
p if o applicable in s and 〈p, s ′〉 ∈ sJoK
0 otherwise

I s0 = I , and

I S? = {s ∈ S | s |= γ}.
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Mapping MDP Planning Tasks to MDPs

Definition (MDP Induced by an MDP Planning Task)

The MDP planning task Π = 〈V , I ,O, γ〉 induces
the MDP T = 〈S , L,R,T , s0, γ〉, where

I S is the set of all states over V ,

I L is the set of operators O,

I R(s, o) = reward(o)(s) for all o ∈ O and s ∈ S ,

I T (s, o, s ′) =

{
p if o applicable in s and 〈p, s ′〉 ∈ sJoK
0 otherwise

I s0 = I , and

I γ = d .
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Complexity of Probabilistic Planning

Definition (Policy Existence)

Policy existence (PolicyEx) is the following decision problem:

Given: SSP planning task Π
Question: Is there a proper policy for Π?
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Membership in EXP

Theorem
PolicyEx ∈ EXP

Proof.
The number of states in an SSP planning task is exponential in the
number of variables. The induced SSP can be solved in time
polynomial in |S | · |L| via linear programming and hence in time
exponential in the input size.
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EXP-completeness of Probabilistic Planning

Theorem
PolicyEx is EXP-complete.

Proof Sketch.
Membership for PolicyEx: see previous slide.

Hardness is shown by Littman (1997) by reducing the
EXP-complete game G4 to PolicyEx.
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G1.4 Estimated Policy Evaluation
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Large SSPs and MDPs

I Before: optimal policies and exact state-values for small SSPs
and MDPs.

I Now: focus on large SSPs and MDPs

I Further algorithms not necessarily optimal
(may generate suboptimal policies)
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Interleaved Planning & Execution

I Number of states of executable policy usually exponential in
number of state variables

I For large SSPs and MDPs, executable policy cannot be
provided explicitly.

I Solution: (possibly approximate) compact representation of
executable policy required to describe solution
⇒ not part of this lecture.

I Alternative solution: interleave planning and execution
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Interleaved Planning & Execution for SSPs

Plan-execute-monitor cycle for SSP T :

I plan action a for the current state s

I execute a

I observe new current state s ′

I set s := s ′

I repeat until s ∈ S?
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Interleaved Planning & Execution for MDPs

Plan-execute-monitor cycle for MDP T :

I plan action a for the current state s

I execute a

I observe new current state s ′

I set s := s ′

I repeat until discounted reward sufficiently small

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 26 / 34

G1. Factored MDPs Estimated Policy Evaluation

Interleaved Planning & Execution in Practice

I avoids loss of precision that often comes
with compact description of executable policy

I does not waste time with planning for states
that are never reached during execution

I poor decisions can be avoided by
spending more time with planning before execution

I in SSPs, this can even mean that computed policy is
not proper and execution never reaches the goal

I in MDPs, it is not clear when the
discounted reward is sufficiently small
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Estimated Policy Evaluation

I The quality of a policy is described by the state-value of the
initial state Vπ(s0)

I Quality of given policy π can be computed (via LP or
backward induction) or approximated arbitrarily closely
(via iterative policy evaluation) in small SSPs or MDPs

I Impossible if planning and execution are interleaved
as policy is incomplete

⇒ Estimate quality of policy π by executing it n ∈ N times
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Executing a Policy

Definition (Run in SSP)

Let T be an SSP and π be a proper policy for T .
A sequence of transitions

ρπ = s0
p1:π(s0)−−−−−→ s1, . . . , sn−1

pn:π(sn−1)−−−−−−→ sn

is a run ρπ of π if si+1 ∼ siJπ(si )K and sn ∈ S?.

The cost of run ρπ is cost(ρπ) =
∑n−1

i=0 cost(π(si )).

A run in an SSP can easily be generated by executing π
from s0 until a state s ∈ S? is encountered.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization December 4, 2019 29 / 34

G1. Factored MDPs Estimated Policy Evaluation

Executing a Policy

Definition (Run in MDP)

Let T be an MDP and π be a policy for T .
A sequence of transitions

ρπ = s0
p1:π(s0)−−−−−→ s1, . . . , sn−1

pn:π(sn−1)−−−−−−→ sn

is a run ρπ of π if si+1 ∼ siJπ(si )K.

The reward of run ρπ is reward(ρπ) =
∑n−1

i=0 γ
i · reward(si , π(si )).

To generate a run, a termination criterion (e.g., based on the
change of the accumulated reward) must be specified.
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Estimated Policy Evaluation

Definition (Estimated Policy Evaluation)

Let T be an SSP, π be a policy for T and 〈ρ1π, . . . , ρnπ〉 be a
sequence of runs of π.
The estimated quality of π via estimated policy evaluation is

Ṽπ :=
1

n
·

n∑
i=1

cost(ρiπ).
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Convergence of Estimated Policy Evaluation in SSPs

Theorem

Let T be an SSP, π be a policy for T and 〈ρ1π, . . . , ρnπ〉 be a
sequence of runs of π.
Then Ṽπ → Vπ(s0) for n→∞.

Proof.
Holds due to the strong law of large numbers.

⇒ Ṽπ is a good approximation of vπ(s0) if n sufficiently large.
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G1.5 Summary
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Summary

I MDP and SSP planning tasks represent
MDPs and SSPs compactly.

I Policy existence in SSPs is EXP-complete.

I Interleaving planning and execution avoids representation
issues of (typically exponentially sized) policy.

I Quality of such an incomplete policy can be estimated by
executing it a fixed number of times.

I In SSPs, estimated policy evaluation converges
to true quality of policy.
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