Planning and Optimization
F4. Value Iteration

Malte Helmert and Thomas Keller

Universitat Basel

December 02, 2019

Content of this Course

Foundations |

Logic |

—| Classical I—

Heuristics |

LT T 1

Constraints |

|:: Factored MDPs |

Content of this Course: Explicit MDPs

—{ Foundations ‘

Linear
Programing

Policy
Iteration

Value
Iteration

Introduction

Introduction
oe

From Policy Iteration to Value lteration

m Policy Iteration:

m search over policies
m by evaluating their state-values

m Value lteration:

m search directly over state-values
m optimal policy induced by final state-values

Value Iteration
©0000

Value lteration

Introduction

Value Iteration

0@000

Value lteration: ldea

Value lteration (VI) was first proposed by Bellman in 1957
computes estimates \70, \71, ... of V. in an iterative process
starts with arbitrary V°

bases estimate V/*1 on values of estimate V' by treating
Bellman equation as update rule on all states:

Vitl(s) ;== min <c(€)+ > T(s,t,5)- \7"(5’))
s'eS

(for SSPs; for MDPs accordingly)

converges to state-values of optimal policy

terminates when difference of estimates is small

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

0.00 | 0.00 | 0.00 | 0.00
. 7

0.00 | 0.00 | 0.00 | 0.00
3

0.00 | 0.00 | 0.00 | 0.00
2

0.00 | 0.00 | 0.00 | 0.00
1 *

0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

1.00 | 1.00 | 1.00 | 0.00
. 7

1.00 | 1.00 | 3.00 | 1.00
3

1.00 | 1.00 | 1.00 | 1.00
2

1.00 | 1.00 | 1.00 | 1.00
1 *

1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

2.00 | 2.00 | 1.00 | 0.00
. 7

2.00 | 2.00 | 5.20 | 1.60
3

2.00 | 2.00 | 2.00 | 2.00
2

2.00 | 2.00 | 2.00 | 2.00
1 *

2.00 | 2.00 | 2.00 | 2.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

3.96 | 2.00 | 1.00 | 0.00
. 7

460 | 3.00 | 7.79 | 2.31
3

5.00 | 4.00 | 4.49 | 3.96
2

5.00 | 5.00 | 4.84 | 4.76

S0

1

5.00 | 5.00 | 5.00 | 4.97

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

446 | 2.00 | 1.00 | 0.00
. 7

5.43 | 3.00 | 8.44 | 2.48
3

6.38 | 4.00 | 5.00 | 4.87
2

8.30 | 6.38 | 6.00 | 6.95

S0

1

8.18 | 7.31 | 7.00 | 8.50

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

450 | 2.00 | 1.00 | 0.00
. 7

5.50 | 3.00 | 8.50 | 2.50
3

6.50 | 4.00 | 5.00 | 5.00
2

8.99 | 6.50 | 6.00 | 7.49

S0

1

8.50 | 7.50 | 7.00 | 9.49

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

5 >

450 | 2.00 | 1.00 | 0.00
. 7

5.50 | 3.00 | 8.50 | 2.50
3

6.50 | 4.00 | 5.00 | 5.00
2

9.00 | 6.50 | 6.00 | 7.50

S0

1

8.50 | 7.50 | 7.00 | 9.50

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

[e]e] le]e}

Introduction Value Iteration

Example: Value lteration

51l === S
4.50 | 2.00 | 1.00 | 0.00
4 | = | 0 :
5.50 | 3.00 | 8.50 | 2.50
3= 0| =]
6.50 | 4.00 | 5.00 | 5.00
o3 | I
9.00 | 6.50 | 6.00 | 7.50
1 =71 =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Tx

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6

Introduction Value Iteration As) 0 Summar
000®0 00000

Value lteration for SSPs

Value lteration for SSP 7 and € > 0
initialize V/° arbitarily
for i=1,2,...:
for all states s € S: N
Vit (s) = mingei(s) (€(0) + Sges T(s:6:5) - Vi())
if maxees |VItL(s) — Vi(s)| < e
return 71'\7,-“

Introduction Value Iteration As) 0 Summar
ooooe 00000

Value lteration for MDPs

initialize V° arbitarily
for i=1,2,...:
for all states s € S: A
VIFL(s) := maxpep(s)(R(S) +7 Xgies T(s:4,8") - VI(s"))
if maxees |VItL(s) — Vi(s)| < e
return it

Asynchronous VI
[eJelele]

Asynchronous VI

Introduction Value Iteration Asynchronous VI

J [e] lele]e}

Asynchronous Value lteration

Updating all states simultaneously is called
synchronous backup

m Asynchronous VI performs backups for individual states
m Different approaches lead to different backup orders

m Can significantly reduce computation
[

Guaranteed to converge if all states are selected repeatedly

= Optimal VI with asynchronous backups possible

Introduction eratio Asynchronous VI
00000

Example: Asynchronous Value Iteration

5 >
450 | 2.00 | 1.00 | 0.00
4 o
5.50 | 3.00 | 8.50 | 2.50
3 757
6.50 | 4.00 | 5.00 | 5.00 v
2
9.00 | 6.50 | 6.00 | 7.50
1 S0
8.50 | 7.50 | 7.00 | 9.50

Demo: Asynchronous VI variant that performs
backup on each state with probability 0.5

Introduction eratio Asynchronous VI

[e]e]e] o}

In-place Value Iteration

m Synchronous value iteration creates new copy of value
function (two are required simultaneously)

Vitl(s) = K?Li(r;) <c(€) + Z T(s,0,s')- \A/i(s’)>

s'eS

m In-place value iteration only requires a single copy of value
function

V(s) = egnLi(r;) (C(ﬁ) + s/% s, 0,s") \7(5’))

m In-place VI is asynchronous because some backups are based
on “old” values, some on “new” values

Introduction eratio Asynchronous VI

[e]e]e]e] }

Example: In-place Value Iteration

5 N

450 | 2.00 | 1.00 | 0.00
4 e

550 | 3.00 | 8.50 | 2.50

718

3 6.50 | 4.00 | 5.00 | 5.00 4
2

9.00 | 6.50 | 6.00 | 7.50
1 So

8.50 | 7.50 | 7.00 | 9.50

Demo: Result for in-place value iteration

Summary
[ele}

Summary

Introduction Value Iteration Asy Summary

oeo

Linear Programming, Policy lteration, or Value Iteration?

Linear Programming is the only technique where the solution
is guaranteed to be optimal (independent from ¢)

Pl and VI are often faster than LP
Pl faster than VI if few iterations required

VI faster than Pl if number of Pl iterations outweighs
difference of policy evaluation compared to VI

Asynchronous VI is basis of more sophisticated algorithm
that can be applied in large MDPs and SSPs

Introduction / eratio A onous V Summary

ooe

Summary

m Value Iteration searches in the space of state-values
m VI applies Bellman equation as update rule iteratively
m VI converges to optimal state-values

m VI remains optimal with asynchronous backups as long as all
states are selected repeatedly

	Introduction
	

	Value Iteration
	

	Asynchronous VI
	

	Summary
	

