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Limitations of LPs in Practice

LP computes optimal policy in time polynomial in |S| - |L]
Possible issues in practice:

m LPs often too expensive even for small MDPs

m LP solver usage prohibited

m More expressive model required (e.g. continuous state space)
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Limitations of LPs in Practice

LP computes optimal policy in time polynomial in |S| - |L]
Possible issues in practice:

m LPs often too expensive even for small MDPs

m LP solver usage prohibited

m More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is suitable alternative. Pl has 2 components:
m Policy Evaluation

m Policy Improvement
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Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)

Let 7 =(S,L,c, T,sp, Si) be an SSP and 7 be an executable
policy for 7.

The state-value Vi (s) of s under 7 is defined as

Vi(s) = {0 if s € 5_*
Q:(s,m(s)) otherwise,

where the action-value Q(s,¥) of s and ¢ under 7 is defined as

Qr(s,0) :==c(0) + Z T(s,¢,s") - V().

s’ esucc(s,l)

The state-value V;(s) describes the expected cost
of applying 7w in SSP T, starting from s.
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
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Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0 for all goal states s,

ExpCost, < (Z T(s,¢,s") - ExpCosty) + c(¥)
s’'eS

forall s € S and ¢ € L(s)
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LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0 for all goal states s,
ExpCost, < (Z T(s,m(s),s’) - ExpCosty) + c((s))

s'eS

for all s € S and-£cL{s)
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Policy Evaluation via LP

m is polynomial in |S]
m difference between polynomial in |S| and
polynomial in |S| - |L| is sometimes relevant in practice

m but often this is not the case

m other practical limitations also apply here

~ Require policy evaluation without LP
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
©Q Linear Program
@ Backward Induction
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Example: Backward Induction in Deterministic SSP

Sy

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
0.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

5l === S
1.00 | 0.00

4 | = | NN
3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
2.00 | 1.00 | 0.00

4.00 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

3.00 | 4.00 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 { 3.00

4.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 { 3.00

7.00 | 4.00 | 5.00

S0

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 { 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00
S0

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 { 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

7.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 { 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Example: Backward Induction in Deterministic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 { 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)
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Policy Evaluation via Backward Induction

m is linear in |5

m but restricted to special cases

~> When is policy evaluation via backward induction possible?

In deterministic planning problems?
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Sy

m cost of 3 to move from striped cells (cost is 1 otherwise)
m probability of 0.4 to “=" in gray cell
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Sy
0.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
m probability of 0.4 to “=" in gray cell
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Example Backward Induction in Probabilistic SSP

5l === S
1.00 | 0.00

4 | = | LN
3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to “=" in gray cell
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Example Backward Induction in Probabilistic SSP

Sy
2.00 | 1.00 | 0.00

2.80 | 3.00

m cost of 3 to move from striped cells (cost is 1 otherwise)
m probability of 0.4 to “=" in gray cell
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Example Backward Induction in Probabilistic SSP

Sy
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 2.80 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00
S0

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m probability of 0.4 to “=" in gray cell
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Policy Evaluation via Backward Induction

m is linear in |S]
m but restricted to special cases

~» When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program

@ Backward Induction for acyclic policies
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Backward Induction: Algorithm

Backward Induction for SSP 7 and complete policy 7

initialize V;(s) :==none foralls € S
while there is a s € S with V,(s) = none:
pick s € S with V;(s) = none and
V:(s") # none for all s’ € succ(s, 7(s))
set Vi(s) := c(n(s)) + > oecs T(s,7m(s),s") - Vi(s')
return V,
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Policy Evaluation: Implementations

Computing V; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction for acyclic policies

© lterative Policy Evaluation
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Iterative Policy Evaluation: Ildea

m impossible to compute state-values
in one sweep over the state space in presence of cycles

m start with arbitrary state-value function V2

m treat state-value function as update rule
Vi(s) = c(m(s) + Y _ T(s.m(s).s') - Vi~X(s')
s’eS

m apply update rule iteratively

m until state-values have converged
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Iterative Policy Evaluation for SSPs: Example

5 1= == S
0.00 | 0.00 | 0.00 | 0.00
, = R
0.00 | 0.00 | 0.00 | 0.00
3 l= | 0| =]«
0.00 | 0.00 | 0.00 | 0.00
> I =
0.00 | 0.00 | 0.00 | 0.00
1 | =0 = =
0.00 | 0.00 | 0.00 | 0.00
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

51l = | == S
1.00 | 1.00 | 1.00 | 0.00
- s
1.00 | 1.00 | 3.00 | 1.00
3 l= | 0| =]«
1.00 | 1.00 | 1.00 | 1.00
> I =
1.00 | 1.00 | 1.00 | 1.00
1| =0 = =
1.00 | 1.00 | 1.00 | 1.00
1 2 3 4

>

A

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6



Introduction Policy Evaluation

000000000000 00e000

/ Improvement

teration

Iterative Policy Evaluation for SSPs: Example

51l = | == S
2.00 | 2.00 | 1.00 | 0.00
- s
2.00 | 2.00 | 5.20 | 1.60
3 l= | 0| =]«
2.00 | 2.00 | 2.00 | 2.00
> I =
2.00 | 2.00 | 2.00 | 2.00
1| =0 = =
2.00 | 2.00 | 2.00 | 2.00
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

5 1= == S
3.96 | 2.00 | 1.00 | 0.00
- s
4.60 | 3.00 | 7.79 | 2.31
3 l= | 0| =]«
5.00 | 4.00 | 5.00 | 5.00
> I =
5.00 | 5.00 | 5.00 | 5.00
1| =0 = =
5.00 | 5.00 | 5.00 | 5.00
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

sl === S
4.46 | 2.00 | 1.00 | 0.00
i | = e
5.43 | 3.00 | 8.44 | 2.50
3 = 1| =]«
6.38 | 4.00 | 5.00 | 7.31
) T | | =
8.30 | 6.38 | 6.00 | 8.18
1| =0 = =
9.00 | 8.00 | 7.00 | 8.96
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation for SSPs: Example

5l === S«
450 | 2.00 | 1.00 | 0.00
i | = e
5.50 | 3.00 | 8.50 | 2.50
3 = 1| =]«
6.50 | 4.00 | 5.00 | 7.50
o It =
9.00 | 6.50 | 6.00 | 8.50
1| =0 = =
9.00 | 8.00 | 7.00 | 9.50
1 2 3 4

m cost of 3 to move from striped cells (cost is 1 otherwise)

m moving from gray cells unsuccessful with probability 0.6
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Iterative Policy Evaluation: Algorithm

initialize V/° arbitarily
for i=1,2,...:
for all states s € S:
Vi(s) := c(n(s)) + Xyes T(s,m(s),s') - Vi (s)
if maxses |Vi(s)— Vi~(s)| < e
return V!
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Iterative Policy Evaluation: Properties

Theorem (Convergence of lterative Policy Evaluation)

Let T be an SSP, w be a proper policy for T and V9(s) € R
arbitrarily for all s € S.
Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi(s) = Vy(s) foralls € S.

i—00

Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if € is small enough.
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Pollcy Evaluation: MDPs

What about policy evaluation for MDPs?

m MDPs (with finite state set) are always cyclic
= backward induction not applicable

m but goal state not required for iterative policy evaluation
m albeit traces are infinite, iterative policy evaluation converges

m convergence theorem also holds for MDPs
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Policy Improvement
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Example: Greedy Action

5 | = | = | = S
450 | 2.00 | 1.00 | 0.00
4 | =1 0| D

550 | 3.00 | 8.50 | 2.50

3= 1|« | =
6.50 | 4.00 | 5.00 | 7.50

) T | | =

9.00 | 6.50 | 6.00 | 8.50

1 1= => | | €
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

m Can we learn more from this than the state-values of a policy?
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Example: Greedy Action

5 | = | > | = S
450 | 2.00 | 1.00 | 0.00
4 | = DL DD

550 | 3.00 | 8.50 | 2.50

3 |l = | 0t l=11
6.50 | 4.00 | 5.00 | 7.50

) T | | =

9.00 | 6.50 | 6.00 | 8.50

S0
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

m Can we learn more from this than the state-values of a policy?
m Yes! By evaluating all actions in each state,
we can derive a better policy
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Greedy actions and policies

Definition (Greedy Action)

Let s be a state of an SSP or MDP 7 and V be a state-value
function for 7. The greedy action in s with respect to V is

ay(s) := argf;nl_l(rl) ( + Z s, 0,s") V(s’)) .

s'eS

The policy my with my(s) = ay(s) is the greedy policy.

Determining the greedy policy of a given state-value function
is called policy improvement.
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Policy Iteration

m Policy Iteration (PI) was first proposed by Howard in 1960

m exploits observation that greedy actions in result of
policy evaluation describe better policy

m starts with arbitrary policy mg
m alternates policy evaluation and policy improvement

m as long as policy changes
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sl === S
450 | 2.00 | 1.00 | 0.00

4 = T Ea 0
5.50 | 3.00 | 8.50 | 2.50

3 | = = | =
6.50 | 4.00 | 5.00 | 7.50
>IN =
9.00 | 6.50 | 6.00 | 8.50
112> =1 1|«
9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

Policy Iteration

[e]e] le]e}

o



Introduction

Example: Policy lteration

Improvement

sl === S
450 | 2.00 | 1.00 | 0.00
4 = T Ea 0
5.50 | 3.00 | 8.50 | 2.50
3 = i <~
6.50 | 4.00 | 5.00 | 5.00
>IN =
9.00 | 6.50 | 6.00 | 8.50
1= 1 1| =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Policy Iteration

[e]e] le]e}

T
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sl === S
4.50 | 2.00 | 1.00 | 0.00
4 = T Ea 0
5.50 | 3.00 | 8.50 | 2.50
3 = i <~
6.50 | 4.00 | 5.00 | 5.00
P30 L L I )
9.00 | 6.50 | 6.00 | 7.50
1= 1| =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

Policy Iteration

[e]e] le]e}

T = T3
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Policy lteration: Algorithm

Policy Iteration for SSP or MDP T

initialize 7y to any policy (for SSP: proper)
for i=0,1,...:
compute V.,
let 7j1 be the greedy policy w.r.t V,
if T, = Ti4+1:
return 7;
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Properties

m Pl computes optimal policy if policy evaluation is exact
m In practice, Pl often requires very few iterations ...

® ... and is much faster than solving an LP
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Summary

m Policy evaluation for acyclic policy is possible in one sweep
over the state space with backward induction

m lterative policy evaluation applies state-value function
iteratively and converges to true state-values

m Greedy actions in evaluated policy allow to improve policy
m Policy iteration alternates policy evaluation and policy
improvement
m Policy iteration computes optimal policy
(if policy evaluation is exact)
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