Planning and Optimization
F3. Policy lteration

Malte Helmert and Thomas Keller

Universitat Basel

December 02, 2019

Planning and Optimization
December 02, 2019 — F3. Policy Iteration

F3.1 Introduction

F3.2 Policy Evaluation
F3.3 Policy Improvement
F3.4 Policy lteration

F3.5 Summary

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019

2 /43

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 1/43
Content of this Course
—I Foundations |
—I Logic |
—| Classical I—
—| Heuristics |
—I Constraints |
Factored MDPs
M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 3 /43

Content of this Course: Explicit MDPs

—| Foundations |

Linear
Programing

Policy
Iteration

Value
Iteration

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019

4/ 43

F3. Policy lteration

F3.1 Introduction

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Introduction

December 02, 2019

5/

43

F3. Policy lteration Introduction

Limitations of LPs in Practice

LP computes optimal policy in time polynomial in |S]| - |L]
Possible issues in practice:

> LPs often too expensive even for small MDPs

» LP solver usage prohibited

» More expressive model required (e.g. continuous state space)

Policy Iteration (PI) is suitable alternative. Pl has 2 components:
» Policy Evaluation

» Policy Improvement

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 6 /43

F3. Policy Iteration

F3.2 Policy Evaluation

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019

7/

43

F3. Policy lteration Policy Evaluation

Reminder: Value Functions for SSPs

Definition (Value Functions for SSPs)

Let T =(S,L,c, T,so,S«) be an SSP and 7 be an executable
policy for T .

The state-value V(s) of s under 7 is defined as

Qr(s,m(s)) otherwise,

{0 ifses,

where the action-value Q(s,¥) of s and ¢ under 7 is defined as

Qs) ==c()+ D> T(s,4,8) Va(s).

s'esucc(s,f)

The state-value V;(s) describes the expected cost
of applying 7 in SSP T, starting from s.

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 8 /43

F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:

© Linear Program

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 9 /43

F3. Policy lteration Policy Evaluation

Reminder: LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective
Maximize ExpCost,,

Subject to

ExpCost,, for all goal states s,

=0
ExpCost, < (Z T(s,4,s") - ExpCost.) + c(€)
s'eS
forall s € S and ¢ € L(s)

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 10 / 43

F3. Policy Iteration Policy Evaluation

LP for Policy Evaluation in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective
Maximize ExpCost,

Subject to

ExpCost,, =0 for all goal states s,

ExpCost, < (z T(s,7(s),s") - ExpCost,) + c(7(s))
s'eS

for all s € S and-LcL{s}

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 11 /43

F3. Policy lteration Policy Evaluation

Policy Evaluation via LP

» is polynomial in |S]|
> difference between polynomial in |S| and
polynomial in |S| - |L| is sometimes relevant in practice

» but often this is not the case

> other practical limitations also apply here

~> Require policy evaluation without LP

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 12 / 43

F3. Policy lteration Policy Evaluation

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 13 / 43

F3. Policy lteration Policy Evaluation

Example: Backward Induction in Deterministic SSP

Sk
5.00 | 2.00 | 1.00 | 0.00

6.00 | 3.00 | 4.00 | 3.00

7.00 | 4.00 | 5.00 | 8.00

10.00 | 7.00 | 6.00 | 9.00

1120 =| 1|«
9.00 | 8.00 | 7.00 |10.00

1 2 3 4
> cost of 3 to move from striped cells (cost is 1 otherwise)

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 14 / 43

F3. Policy Iteration Policy Evaluation

Policy Evaluation via Backward Induction

» is linear in |S]
» but restricted to special cases

~» When is policy evaluation via backward induction possible?

In deterministic planning problems?

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 15 / 43

F3. Policy lteration Policy Evaluation

Example: Backward Induction in Probabilistic SSP

Sx
5.00 | 2.00 | 1.00 | 0.00

4 | =
6.00 | 3.00 | 2.80 | 3.00
3 | = &= | &«
7.00 | 4.00 | 5.00 | 8.00
2 b=
10.00 | 7.00 | 6.00 | 9.00
1| =T = =

9.00 | 8.00 | 7.00 |10.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)
> probability of 0.4 to “=" in gray cell

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 16 / 43

F3. Policy lteration Policy Evaluation

Policy Evaluation via Backward Induction

» is linear in |S]

» but restricted to special cases

~> When is policy evaluation via backward induction possible?

In deterministic planning problems?
No, policy must be acyclic.

December 02, 2019 17 / 43

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

F3. Policy lteration

Policy Evaluation: Implementations

Computing V;; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
@ Linear Program

@ Backward Induction for acyclic policies

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 18 / 43

F3. Policy Iteration Policy Evaluation

Backward Induction: Algorithm

Backward Induction for SSP 7 and complete policy 7
initialize V(s) := none for all s € S
while there is a s € S with V(s) = none:
pick s € S with V,(s) = none and
V(") # none for all s’ € succ(s, 7(s))
set Vir(s) := c(n(s)) + X gcs T(s,7(s),s") - Vx(s')
return V

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 19 / 43

F3. Policy lteration

Policy Evaluation: Implementations

Computing V,; for a given policy 7 is called policy evaluation.

There are several algorithms for policy evaluation:
© Linear Program
@ Backward Induction for acyclic policies

© lIterative Policy Evaluation

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

December 02, 2019 20 /

Policy Evaluation

43

F3. Policy lteration

Iterative Policy Evaluation: ldea

» impossible to compute state-values
in one sweep over the state space in presence of cycles

P start with arbitrary state-value function \779

P treat state-value function as update rule
Vi(s) = c(n(s)) + > T(s,m(s),s") - Vi \(s")
s’'eS

» apply update rule iteratively

» until state-values have converged

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 21 / 43

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

sl === S
0.00 | 0.00 | 0.00 | 0.00
s =100

0.00 | 0.00 | 0.00 | 0.00

3 = ﬂ <~
0.00 | 0.00 | 0.00 | 0.00 4

) i 0 T | =
0.00 | 0.00 | 0.00 | 0.00
1 | =
0.00 | 0.00 | 0.00 | 0.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)
» moving from gray cells unsuccessful with probability 0.6

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 22 /43

F3. Policy Iteration

Iterative Policy Evaluation for SSPs: Example

s |l=|=>|=>] >

1.00 | 1.00 | 1.00 | 0.00

1.00 | 1.00 | 3.00 | 1.00

>

A=

3 = T <~ =
1.00 | 1.00 | 1.00 | 1.00

9 “=
1.00 | 1.00 | 1.00 | 1.00
1 =% = =

1.00 | 1.00 | 1.00 | 1.00

1 2 3 4

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 23 / 43

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

s |l=|=>|=>] >

2.00 | 2.00 | 1.00 | 0.00

4 | = -
2.00 | 2.00 | 5.20 | 1.60
3 = 'ﬂ‘ ~ <~ \72
2.00 | 2.00 | 2.00 | 2.00 ™
2 =
2.00 | 2.00 | 2.00 | 2.00
1 =% = =

2.00 | 2.00 | 2.00 | 2.00

1 2 3 4

» cost of 3 to move from striped cells (cost is 1 otherwise)

» moving from gray cells unsuccessful with probability 0.6

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 24 /43

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

5l === S
3.96 | 2.00 | 1.00 | 0.00

=]

4.60 | 3.00 | 7.79 | 2.31

3 = ﬂ <~
5.00 | 4.00 | 5.00 | 5.00 g

2 i i T | =
5.00 | 5.00 | 5.00 | 5.00
1 | =
5.00 | 5.00 | 5.00 | 5.00

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)
» moving from gray cells unsuccessful with probability 0.6

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 25 / 43

F3. Policy lteration

Iterative Policy Evaluation for SSPs: Example

sl === S«
4.46 | 2.00 | 1.00 | 0.00

P S S S

5.43 | 3.00 | 8.44 | 2.50

3 = s <~ =
6.38 | 4.00 | 5.00 | 7.31 i

X | |

8.30 | 6.38 | 6.00 | 8.18

<
=
o

112> =] 1| €
9.00 | 8.00 | 7.00 | 8.96

> cost of 3 to move from striped cells (cost is 1 otherwise)
» moving from gray cells unsuccessful with probability 0.6
December 02, 2019

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

26 / 43

F3. Policy Iteration

Iterative Policy Evaluation for SSPs: Example

Si
450 | 2.00 | 1.00 | 0.00

4 = |
5.50 | 3.00 | 8.50 | 2.50
3 | = = | = V29
6.50 | 4.00 | 5.00 | 7.50 4
2 ~

9.00 | 6.50 | 6.00 | 8.50

9.00 | 8.00 | 7.00 | 9.50

1 2 3 4

> cost of 3 to move from striped cells (cost is 1 otherwise)
» moving from gray cells unsuccessful with probability 0.6

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Evaluation

December 02, 2019 27 / 43

F3. Policy lteration

Iterative Policy Evaluation: Algorithm

Iterative Policy Evaluation for SSP T, policy 7 and ¢ > 0
initialize V/° arbitarily
for i=1,2,...:
for all states s € S:
Va(s) = c((s)) + Xses T(s,m(s), 8) - Vi-1l(s")
if maxses |Vi(s) — Vi7l(s)| < e
return V/

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019

Policy Evaluation

28 / 43

F3. Policy lteration Policy Evaluation

Iterative Policy Evaluation: Properties

Theorem (Convergence of Iterative Policy Evaluation)

Let T be an SSP, 7 be a proper policy for T and VO(s) € R
arbitrarily for all s € S.
Iterative policy evaluation converges to the true state-values, i.e.,

lim Vi(s) = Vi(s) foralls € S.

i—00
Proof omitted.

In practice, iterative policy evaluation converges to
true state-values if ¢ is small enough.

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 29 / 43

F3. Policy lteration Policy Evaluation

Policy Evaluation: MDPs

What about policy evaluation for MDPs?

» MDPs (with finite state set) are always cyclic
= backward induction not applicable

» but goal state not required for iterative policy evaluation

v

albeit traces are infinite, iterative policy evaluation converges

» convergence theorem also holds for MDPs

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 30 / 43

F3. Policy Iteration Policy Improvement

F3.3 Policy Improvement

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 31 /43

F3. Policy lteration Policy Improvement

Example: Greedy Action

5 =] == S«
4.50 | 2.00 | 1.00 | 0.00

4 = Ay
5.50 | 3.00 | 8.50 | 2.50

3 =2 0]« | €
6.50 | 4.00 | 5.00 | 7.50

9.00 | 6.50 | 6.00 | 8.50

9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

» Can we learn more from this than the state-values of a policy?

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 32 /43

F3. Policy lteration Policy Improvement

Example: Greedy Action

5 === S«
4.50 | 2.00 | 1.00 | 0.00

I O O O
5.50 | 3.00 | 850 | 2.50

3=t =11
6.50 | 4.00 | 5.00 | 7.50

X N | [
9.00 | 6.50 | 6.00 | 8.50

So
1 = M 1§ <~
9.0 | 8.00 | 7.00 | 9.50

1 2 3 4

» Can we learn more from this than the state-values of a policy?
> Yes! By evaluating all actions in each state,
we can derive a better policy
December 02, 2019 33 /43

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

F3. Policy lteration

Greedy actions and policies

Definition (Greedy Action)
Let s be a state of an SSP or MDP 7T and V be a state-value
function for 7. The greedy action in s with respect to V is

ay(s) := argeénl_i(r;) c(f) + Z T(s,¢,s')- V(s
s'eS

The policy my with my(s) = ay(s) is the greedy policy.

Determining the greedy policy of a given state-value function
is called policy improvement.

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Improvement

December 02, 2019 34 /43

F3. Policy Iteration Policy Iteration

F3.4 Policy Iteration

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 35 /43

F3. Policy lteration

Policy Iteration

» Policy Iteration (PI) was first proposed by Howard in 1960

> exploits observation that greedy actions in result of
policy evaluation describe better policy

> starts with arbitrary policy mg

v

alternates policy evaluation and policy improvement

P as long as policy changes

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization

Policy Iteration

December 02, 2019 36 / 43

F3. Policy lteration

Example: Policy Iteration

Policy Iteration

F3. Policy lteration

Example: Policy Iteration

5= | == S«
4.50 | 2.00 | 1.00 | 0.00
= goe
5.50 | 3.00 | 8.50 | 2.50
3 = gy <~
6.50 | 4.00 | 5.00 | 5.00
5 =
9.00 | 6.50 | 6.00 | 8.50
1 =" =
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

M. Helmert, T. Keller (Universitat Basel)

Planning and Optimization

T

Policy Iteration

December 02, 2019 38 / 43

5 = | == S«
4.50 | 2.00 | 1.00 | 0.00
5.50 | 3.00 | 8.50 | 2.50
3 | = <= | = o
6.50 | 4.00 | 5.00 | 7.50
2 <~
9.00 | 6.50 | 6.00 | 8.50
1| =" = =
9.00 | 8.00 | 7.00 | 9.50
1 2 3 4
M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 37 / 43
F3. Policy Iteration Policy Iteration
Example: Policy Iteration
sl === S«
450 | 2.00 | 1.00 | 0.00
4 | = | T | D
5.50 | 3.00 | 8.50 | 2.50
3 = f = f Ty = T3
6.50 | 4.00 | 5.00 | 5.00
X O [O [O O
9.00 | 6.50 | 6.00 | 7.50
S0
1= e
8.50 | 7.50 | 7.00 | 9.50
1 2 3 4

M. Helmert, T. Keller (Universitat Basel)

Planning and Optimization

December 02, 2019 39 /43

F3. Policy lteration

Policy lteration: Algorithm

Policy Iteration for SSP or MDP T

initialize o to any policy (for SSP: proper)

for i=0,1,...:
compute Vi,

let i1 be the greedy policy w.r.t V.

if T =miy1:
return 7;

M. Helmert, T. Keller (Universitat Basel)

Planning and Optimization

Policy Iteration

December 02, 2019 40 / 43

F3. Policy lteration Policy Iteration

Properties

» Pl computes optimal policy if policy evaluation is exact
> In practice, Pl often requires very few iterations ...

» ... and is much faster than solving an LP

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 41 / 43

F3. Policy lteration

F3.5 Summary

M. Helmert, T. Keller (Universitat Basel)

Planning and Optimization

December 02, 2019

Summary

42 /43

F3. Policy Iteration Summary

Summary

» Policy evaluation for acyclic policy is possible in one sweep
over the state space with backward induction

> |terative policy evaluation applies state-value function
iteratively and converges to true state-values

» Greedy actions in evaluated policy allow to improve policy

» Policy iteration alternates policy evaluation and policy
improvement

» Policy iteration computes optimal policy
(if policy evaluation is exact)

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization December 02, 2019 43 / 43

	Introduction
	

	Policy Evaluation
	

	Policy Improvement
	

	Policy Iteration
	

	Summary
	

