Planning and Optimization F2. Bellman Equation & Linear Programming

Malte Helmert and Thomas Keller

Universität Basel

November 27, 2019

Bellman Equatio

Linear Programming

Content of this Course

Introduction 0000 Bellman Equatio

Linear Programming

Summary 00

Content of this Course: Explicit MDPs

Bellman Equation 00000000 Linear Programming

Summary 00

Introduction

Quality of Solutions

- Solution in classical planning: plan
- Optimality criterion of a solution in classical planning: minimize plan cost

Quality of Solutions

- Solution in classical planning: plan
- Optimality criterion of a solution in classical planning: minimize plan cost
- Solution in probabilistic planning: policy
- What is the optimality criterion of a solution in probabilistic planning?

Example: Swiss Lotto

Example (Swiss Lotto)

What is the expected payoff of placing one bet in Swiss Lotto for a cost of *CHF*2.50 with (simplified) payouts and probabilities:

Example: Swiss Lotto

Example (Swiss Lotto)

What is the expected payoff of placing one bet in Swiss Lotto for a cost of *CHF*2.50 with (simplified) payouts and probabilities:

(6+1)CHF 30.000.000 with prob. 1/31474716 CHF 1.000.000 with prob. 1/5245786 (6)CHF 5.000 with prob. 1/850668 (5)CHF 50 with prob. 1/111930 (4)CHF 10 with prob. 1/11480 (3)30000000 1000000 5000 Solution: 5245786 31474716 ' 850668 50 10 $\overline{11480} - 2.5 \approx -1.35.$ 111930

Summary 00

Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let X be a random variable with a finite number of outcomes $d_1, \ldots, d_n \in \mathbb{R}$, and let d_i happen with probability $p_i \in [0, 1]$ (for $i = 1, \ldots n$) s.t. $\sum_{i=1}^n p_i = 1$. The expected value of X is $\mathbb{E}[X] = \sum_{i=1}^n (p_i \cdot d_i)$.

Bellman Equation

Linear Programming

Summary 00

Bellman Equation

Value Functions for MDPs

Definition (Value Functions for MDPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, \gamma \rangle$ be an MDP and π be an executable policy for \mathcal{T} .

The state-value $V_{\pi}(s)$ of s under π is defined as

$$V_{\pi}(s) := Q_{\pi}(s,\pi(s))$$

where the action-value $Q_{\pi}(s, \ell)$ of s and ℓ under π is defined as

$$egin{aligned} \mathcal{Q}_{\pi}(s,\ell) &:= \mathcal{R}(s,\ell) + \gamma \cdot \sum_{s' \in ext{succ}(s,\ell)} \mathcal{T}(s,\ell,s') \cdot \mathcal{V}_{\pi}(s') \end{aligned}$$

The state-value $V_{\pi}(s)$ describes the expected reward of applying π in MDP \mathcal{T} , starting from *s*.

Bellman Equation in MDPs

Definition (Bellman Equation in MDPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, \gamma \rangle$ be an MDP.

The Bellman equation for a state s of T is the set of equations that describes $V_*(s)$, where

$$egin{aligned} V_\star(s) &:= \max_{\ell \in L(s)} Q_\star(s,\ell) \ Q_\star(s,\ell) &:= R(s,\ell) + \gamma \cdot \sum_{s' \in ext{succ}(s,\ell)} T(s,\ell,s') \cdot V_\star(s'). \end{aligned}$$

The solution $V_{\star}(s)$ of the Bellman equation describes the maximal expected reward that can be achieved from state s in MDP \mathcal{T} .

Optimal Policy in MDPs

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy in MDPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, \gamma \rangle$ be an MDP. A policy π is an optimal policy if $\pi(s) \in \operatorname{arg\,max}_{\ell \in L(s)} Q_{\star}(s, \ell)$ for all $s \in S$ and the expected reward of π in \mathcal{T} is $V_{\star}(s_0)$.

W.I.o.g., we assume the optimal policy is unique and written as π^* .

Summary 00

Value Functions for SSPs

Definition (Value Functions for SSPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ be an SSP and π be an executable policy for \mathcal{T} .

The state-value $V_{\pi}(s)$ of s under π is defined as

$$\mathcal{V}_{\pi}(s) := egin{cases} 0 & ext{if } s \in \mathcal{S}_{\star} \ \mathcal{Q}_{\pi}(s,\pi(s)) & ext{otherwise,} \end{cases}$$

where the action-value $Q_{\pi}(s, \ell)$ of s and ℓ under π is defined as

$$\mathcal{Q}_{\pi}(s,\ell) := c(\ell) + \sum_{s' \in ext{succ}(s,\ell)} T(s,\ell,s') \cdot V_{\pi}(s').$$

The state-value $V_{\pi}(s)$ describes the expected cost of applying π in SSP \mathcal{T} , starting from s.

Bellman Equation in SSPs

Definition (Bellman Equation in SSPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_\star \rangle$ be an SSP.

The Bellman equation for a state s of T is the set of equations that describes $V_*(s)$, where

$$egin{aligned} &V_\star(s) := \min_{\ell \in L(s)} Q_\star(s,\ell) \ &Q_\star(s,\ell) := c(\ell) + \sum_{s' \in ext{succ}(s,\ell)} T(s,\ell,s') \cdot V_\star(s'). \end{aligned}$$

The solution $V_*(s)$ of the Bellman equation describes the minimal expected cost that can be achieved from state s in SSP \mathcal{T} .

Optimal Policy in SSPs

What is the policy that achieves the minimal expected cost?

Definition (Optimal Policy in SSPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be an SSP. A policy π is an optimal policy if $\pi(s) \in \arg\min_{\ell \in L(s)} Q_*(s, \ell)$ for all $s \in S$ and the expected cost of π in \mathcal{T} is $V_*(s_0)$.

W.I.o.g., we assume the optimal policy is unique and written as π^* .

Bellman Equation

Linear Programming

Proper SSP Policy

Definition (Proper SSP Policy)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be an SSP and π be an executable policy for \mathcal{T} . π is proper if it reaches a goal state from each reachable state with probability 1, i.e. if

$$\sum_{s \stackrel{p_1:\ell_1}{\longrightarrow} s', \dots, s'' \stackrel{p_n:\ell_n}{\longrightarrow} s_{\star}} \prod_{i=1}^n p_i = 1$$

for all states $s \in S_{\pi}(s)$.

Bellman Equation

Linear Programming •000000

Summary 00

Linear Programming

	Linear Programming 0●00000	

Content of this Course: Explicit MDPs

Linear Programming for SSPs

- Bellman equation gives set of equations that describes expected cost for each state
- there are |S| variables and |S| equations
 (assuming Q_{*} is replaced in V_{*} with corresponding equation)
- If we solve these equations, we have solved the SSP
- Problem: how can we deal with the minimization?
- ⇒ We have solved the "same" problem before with the help of an LP solver

Reminder: LP for Shortest Path in State Space

Variables

Non-negative variable Distance_s for each state s

Objective

Maximize Distance_{s0}

Subject to

 $Distance_{s_{\star}} = 0 \qquad \qquad \text{for all goal states } s_{\star}$

Distance_s \leq Distance_{s'} + $c(\ell)$ for all transitions $s \xrightarrow{\ell} s'$

LP for Expected Cost in SSP

Variables

Non-negative variable ExpCost_s for each state s

Objective

Maximize ExpCost_{so}

Subject to

$$\begin{split} \mathsf{ExpCost}_{s_\star} &= 0 \quad \text{for all goal states } s_\star \\ \mathsf{ExpCost}_s &\leq (\sum_{s' \in S} \mathcal{T}(s, \ell, s') \cdot \mathsf{ExpCost}_{s'}) + c(\ell) \\ & \text{for all } s \in S \text{ and } \ell \in L(s) \end{split}$$

LP for Expected Reward in MDP

Variables

Non-negative variable $ExpReward_s$ for each state s

Objective

Minimize ExpReward_{so}

Subject to

$$\begin{aligned} \mathsf{ExpReward}_{s} \geq (\gamma \cdot \sum_{s' \in S} T(s, \ell, s') \mathsf{ExpReward}_{s'}) + R(s, \ell) \\ & \text{for all } s \in S \text{ and } \ell \in L(s) \end{aligned}$$

Complexity of Probabilistic Planning

- optimal solution for MDPs or SSPs can be computed with LP solver
- requires |S| variables and $|S| \cdot |L|$ constraints
- we know that LPs can be solved in polynomial time
- $\blacksquare \Rightarrow$ solving MDPs or SSPs is a polynomial time problem

How does this relate to the complexity result for classical planning?

Complexity of Probabilistic Planning

- optimal solution for MDPs or SSPs can be computed with LP solver
- requires |S| variables and $|S| \cdot |L|$ constraints
- we know that LPs can be solved in polynomial time
- $\blacksquare \Rightarrow$ solving MDPs or SSPs is a polynomial time problem

How does this relate to the complexity result for classical planning? Solving MDPs or SSPs is polynomial in $|S| \cdot |L|$ Bellman Equation

Linear Programming

Summary •0

Summary

Summary

- State-value of a policy describes expected reward (cost) of following that policy
- Related Bellman equation describes optimal policy
- Solution to Bellman equation gives optimal policy
- Linear Programming can be used to solve MDPs and SSPs in time polynomial in size of state space and actions