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Quality of Solutions

Solution in classical planning: plan

Optimality criterion of a solution in classical planning:
minimize plan cost

Solution in probabilistic planning: policy

What is the optimality criterion of a solution in probabilistic
planning?
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Example: Swiss Lotto

Example (Swiss Lotto)

What is the expected payoff of placing one bet in Swiss Lotto for a
cost of CHF2.50 with (simplified) payouts and probabilities:

CHF 30.000.000 with prob. 1/31474716 (6 + 1)

CHF 1.000.000 with prob. 1/5245786 (6)

CHF 5.000 with prob. 1/850668 (5)

CHF 50 with prob. 1/111930 (4)

CHF 10 with prob. 1/11480 (3)

Solution:
30000000

31474716
+

1000000

5245786
+

5000

850668
+

50

111930
+

10

11480
− 2.5 ≈ −1.35.
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Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let X be a random variable with a finite number of
outcomes d1, . . . , dn ∈ R, and let di happen with
probability pi ∈ [0, 1] (for i = 1, . . . n) s.t.

∑n
i=1 pi = 1.

The expected value of X is E[X ] =
∑n

i=1(pi · di ).
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Bellman Equation
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Value Functions for MDPs

Definition (Value Functions for MDPs)

Let T = 〈S , L, c,T , s0, γ〉 be an MDP and π be an executable
policy for T .

The state-value Vπ(s) of s under π is defined as

Vπ(s) := Qπ(s, π(s))

where the action-value Qπ(s, `) of s and ` under π is defined as

Qπ(s, `) := R(s, `) + γ ·
∑

s′∈succ(s,`)

T (s, `, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected reward
of applying π in MDP T , starting from s.
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Bellman Equation in MDPs

Definition (Bellman Equation in MDPs)

Let T = 〈S , L, c,T , s0, γ〉 be an MDP.

The Bellman equation for a state s of T is the set of equations
that describes V?(s), where

V?(s) := max
`∈L(s)

Q?(s, `)

Q?(s, `) := R(s, `) + γ ·
∑

s′∈succ(s,`)

T (s, `, s ′) · V?(s ′).

The solution V?(s) of the Bellman equation describes the maximal
expected reward that can be achieved from state s in MDP T .
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Optimal Policy in MDPs

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy in MDPs)

Let T = 〈S , L, c,T , s0, γ〉 be an MDP.
A policy π is an optimal policy if π(s) ∈ arg max`∈L(s)Q?(s, `) for
all s ∈ S and the expected reward of π in T is V?(s0).

W.l.o.g., we assume the optimal policy is unique and written as π?.
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Value Functions for SSPs

Definition (Value Functions for SSPs)

Let T = 〈S , L, c,T , s0, S?〉 be an SSP and π be an executable
policy for T .

The state-value Vπ(s) of s under π is defined as

Vπ(s) :=

{
0 if s ∈ S?

Qπ(s, π(s)) otherwise,

where the action-value Qπ(s, `) of s and ` under π is defined as

Qπ(s, `) := c(`) +
∑

s′∈succ(s,`)

T (s, `, s ′) · Vπ(s ′).

The state-value Vπ(s) describes the expected cost
of applying π in SSP T , starting from s.
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Bellman Equation in SSPs

Definition (Bellman Equation in SSPs)
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The Bellman equation for a state s of T is the set of equations
that describes V?(s), where

V?(s) := min
`∈L(s)

Q?(s, `)

Q?(s, `) := c(`) +
∑

s′∈succ(s,`)

T (s, `, s ′) · V?(s ′).
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Optimal Policy in SSPs

What is the policy that achieves the minimal expected cost?

Definition (Optimal Policy in SSPs)

Let T = 〈S , L, c,T , s0, S?〉 be an SSP.
A policy π is an optimal policy if π(s) ∈ arg min`∈L(s)Q?(s, `) for
all s ∈ S and the expected cost of π in T is V?(s0).

W.l.o.g., we assume the optimal policy is unique and written as π?.



Introduction Bellman Equation Linear Programming Summary

Proper SSP Policy

Definition (Proper SSP Policy)

Let T = 〈S , L, c,T , s0, S?〉 be an SSP and π be an executable
policy for T . π is proper if it reaches a goal state from each
reachable state with probability 1, i.e. if

∑
s

p1:`1−−−→s′,...,s′′
pn :`n−−−→s?

n∏
i=1

pi = 1

for all states s ∈ Sπ(s).
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Linear Programming
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Linear Programming for SSPs

Bellman equation gives set of equations that
describes expected cost for each state

there are |S | variables and |S | equations
(assuming Q? is replaced in V? with corresponding equation)

If we solve these equations, we have solved the SSP

Problem: how can we deal with the minimization?

⇒ We have solved the “same” problem before

⇒

with the help of an LP solver
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Reminder: LP for Shortest Path in State Space

Variables

Non-negative variable Distances for each state s

Objective

Maximize Distances0

Subject to

Distances?= 0 for all goal states s?

Distances ≤ Distances′ + c(`) for all transitions s
`−→ s ′
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LP for Expected Cost in SSP

Variables

Non-negative variable ExpCosts for each state s

Objective

Maximize ExpCosts0

Subject to

ExpCosts? = 0 for all goal states s?

ExpCosts ≤ (
∑
s′∈S

T (s, `, s ′) · ExpCosts′) + c(`)

for all s ∈ S and ` ∈ L(s)
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LP for Expected Reward in MDP

Variables

Non-negative variable ExpRewards for each state s

Objective

Minimize ExpRewards0

Subject to

ExpRewards ≥ (γ ·
∑
s′∈S

T (s, `, s ′)ExpRewards′) + R(s, `)

for all s ∈ S and ` ∈ L(s)
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Complexity of Probabilistic Planning

optimal solution for MDPs or SSPs can be
computed with LP solver

requires |S | variables and |S | · |L| constraints

we know that LPs can be solved in polynomial time

⇒ solving MDPs or SSPs is a polynomial time problem

How does this relate to the complexity result for classical planning?

Solving MDPs or SSPs is polynomial in |S | · |L|
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Summary

State-value of a policy describes expected reward (cost) of
following that policy

Related Bellman equation describes optimal policy

Solution to Bellman equation gives optimal policy

Linear Programming can be used to solve MDPs and SSPs
in time polynomial in size of state space and actions


	Introduction
	

	Bellman Equation
	

	Linear Programming
	

	Summary
	


