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Quality of Solutions

m Solution in classical planning: plan

m Optimality criterion of a solution in classical planning:
minimize plan cost
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Quality of Solutions

m Solution in classical planning: plan

m Optimality criterion of a solution in classical planning:
minimize plan cost

m Solution in probabilistic planning: policy

m What is the optimality criterion of a solution in probabilistic
planning?
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Example: Swiss Lotto

Example (Swiss Lotto)

What is the expected payoff of placing one bet in Swiss Lotto for a
cost of CHF2.50 with (simplified) payouts and probabilities:

CHF 30.000.000 with prob. 1/31474716 (6 + 1)
CHF 1.000.000 with prob. 1/5245786 (6)
CHF 5.000 with prob. 1/850668 (5)
CHF 50 with prob. 1/111930 (4)
CHF 10 with prob. 1/11480 (3)
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Example: Swiss Lotto

Example (Swiss Lotto)

What is the expected payoff of placing one bet in Swiss Lotto for a
cost of CHF2.50 with (simplified) payouts and probabilities:

CHF 30.000.000 with prob. 1/31474716 (6 + 1)
CHF 1.000.000 with prob. 1/5245786 (6)

CHF 5.000 with prob. 1/850668 (5)
CHF 50 with prob. 1/111930 (4)
CHF 10 with prob. 1/11480 3)

30000000 i 1000000 o 5000
31474716 5245786 = 850668

50 10
— 25~ —1.35.
111930 + 11480 > 35

Solution:
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Expected Values under Uncertainty

Definition (Expected Value of a Random Variable)

Let X be a random variable with a finite number of
outcomes di, ..., d, € R, and let d; happen with
probability p; € [0,1] (for i =1,...n)s.t. >/ ; pi=1.
The expected value of X is E[X] = >"7_;(pi - dj).
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Value Functions for MDPs

Definition (Value Functions for MDPs)

Let T =(S,L,c, T,sp,7y) be an MDP and 7 be an executable
policy for T.

The state-value Vi (s) of s under 7 is defined as
Vi(s) = Qx(s,m(s))

where the action-value Q(s,¥) of s and ¢ under 7 is defined as

Qr(s,0) := R(s,¢) +~- Z T(s,0,s") - V().

s’ €succ(s,l)

The state-value V;(s) describes the expected reward
of applying w in MDP T, starting from s.



Introduction Bellman Equation Linear Programming Summary
00800000 00« ¥e) 00

Bellman Equation in MDPs

Definition (Bellman Equation in MDPs)
Let 7 =(S,L,c, T,sp,7) be an MDP.

The Bellman equation for a state s of T is the set of equations
that describes V,(s), where

V*(S) = Zrenl_a(l() Q*(S,E)

Qs ) =R(s,0)+v- Y T(s,4,5) Vi(s).

s’ esucc(s,l)

The solution V,(s) of the Bellman equation describes the maximal
expected reward that can be achieved from state s in MDP 7.
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Optimal Policy in MDPs

What is the policy that achieves the maximal expected reward?

Definition (Optimal Policy in MDPs)

Let 7 =(S,L,c, T,sp,7) be an MDP.
A policy 7 is an optimal policy if 7(s) € arg maxye(s) Q(s, £) for
all s € S and the expected reward of 7 in T is V,(sp).

W.l.o.g., we assume the optimal policy is unique and written as 7*.
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Value Functions for SSPs

Definition (Value Functions for SSPs)

Let 7 =(S,L,c, T,sp, Si) be an SSP and 7 be an executable
policy for 7.
The state-value Vi (s) of s under 7 is defined as

Vi(s) = {0 if s € 5_*
Q:(s,m(s)) otherwise,

where the action-value Q(s,¥) of s and ¢ under 7 is defined as

Qr(s,0) :==c(0) + Z T(s,¢,s") - Vr(s).

s’ esucc(s,l)

The state-value V;(s) describes the expected cost
of applying 7w in SSP T, starting from s.



Introduction Bellman Equation Linear Programming Summary
00000000

Bellman Equation in SSPs

Definition (Bellman Equation in SSPs)
Let 7 =(S,L,c, T,sp, Ss) be an SSP.

The Bellman equation for a state s of T is the set of equations
that describes V,(s), where

V*(S) = Zg]LI(rl) Q*(S, 6)

Qs ) :==c(O)+ Y T(s,45)-Vi(s).

s’esucc(s,l)

The solution V,(s) of the Bellman equation describes the minimal
expected cost that can be achieved from state s in SSP 7.
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Optimal Policy in SSPs

What is the policy that achieves the minimal expected cost?

Definition (Optimal Policy in SSPs)

Let 7 =(S,L,c, T,sp,Ss) be an SSP.
A policy 7 is an optimal policy if 7(s) € arg minye(s) Q«(s, £) for
all s € S and the expected cost of 7 in T is Vi(sp).

W.l.o.g., we assume the optimal policy is unique and written as 7*.
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Proper SSP Policy

Definition (Proper SSP Policy)

Let T =(S,L,c, T,sp,Ss) be an SSP and 7 be an executable
policy for 7. 7 is proper if it reaches a goal state from each
reachable state with probability 1, i.e. if

> et

p1:41 pniln i=1
s—>s/,..., s/ —>s,

for all states s € S;(s).
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Linear Programming for SSPs

m Bellman equation gives set of equations that
describes expected cost for each state

m there are |S| variables and |S| equations
(assuming Q. is replaced in V, with corresponding equation)

m If we solve these equations, we have solved the SSP
m Problem: how can we deal with the minimization?

= We have solved the “same” problem before
with the help of an LP solver
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Reminder: LP for Shortest Path in State Space

Variables
Non-negative variable Distance; for each state s

Objective

Maximize Distances,

Distance;,= 0 for all goal states s,

. . . 14
Distances < Distances + c(¥) for all transitions s — s’
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LP for Expected Cost in SSP

Variables
Non-negative variable ExpCost, for each state s

Objective

Maximize ExpCost

ExpCost, =0 for all goal states s,

ExpCost, < (Z T(s,¢,s") - ExpCosty) + c(¥)
s’'eS

forall s € S and ¢ € L(s)
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LP for Expected Reward in MDP

—
—

Variables
Non-negative variable ExpReward, for each state s

Objective
Minimize ExpReward

ExpReward, > (v - Z T(s,4,s")ExpReward, ) + R(s, )
s’eS
forall s € S and ¢ € L(s)
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CompIeX|ty of Probabilistic Planning

m optimal solution for MDPs or SSPs can be
computed with LP solver

m requires |S| variables and |S| - |L| constraints
m we know that LPs can be solved in polynomial time
m = solving MDPs or SSPs is a polynomial time problem

How does this relate to the complexity result for classical planning?
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Complexity of Probabilistic Planning

m optimal solution for MDPs or SSPs can be
computed with LP solver

m requires |S| variables and |S| - |L| constraints
m we know that LPs can be solved in polynomial time
m = solving MDPs or SSPs is a polynomial time problem

How does this relate to the complexity result for classical planning?

Solving MDPs or SSPs is polynomial in |S] - |L|
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Summary

m State-value of a policy describes expected reward (cost) of
following that policy

m Related Bellman equation describes optimal policy
m Solution to Bellman equation gives optimal policy

m Linear Programming can be used to solve MDPs and SSPs
in time polynomial in size of state space and actions
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