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Limitations of Classical Planning
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m timetable for astronauts on ISS
m concurrency required for some experiments

m optimize makespan
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Limitations of Classical Planning

m kinematics of robotic arm
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Generalization of Classical Planning: Numeric Planning

m kinematics of robotic arm
m state space is continuous
m preconditions and effects described by complex functions
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m satellite takes images of patches on earth
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m satellite takes images of patches on earth
m weather forecast is uncertain

m find solution with lowest expected cost
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m Chess
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m Chess

m there is an opponent with a contradictory objective
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Limitations of Classical Planning

m Solitaire
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Generalization of Classical Planning: POMDPs
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m Solitaire
m some state information cannot be observed

m must reason over belief for good behaviour
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Limitations of Classical Planning

m many applications are combinations of these
m all of these are active research areas

m we focus on one of them:
probabilistic planning with Markov decision processes

m MDPs are closely related to games (Why?)
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Markov Decision Processes

m Markov decision processes (MDPs) studied since the 1950s

m Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs (~» Part F)

m Today, focus on large, factored MDPs (~ Part G)

m Fundamental datastructure for reinforcement learning
(not covered in this course)

m and for probabilistic planning

m different variants exist

Summar
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Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple 7 = (S, L, ¢, T, so, Sx) where
m S is a finite set of states,
m L is a finite set of (transition) labels,
mc:L— ]RBL is a label cost function,

T C S x L xS is the transition relation,

sp € S is the initial state, and

S, C S is the set of goal states.
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Reminder: Transition System Example

|
(18)

Logistics problem with one package, one truck, two locations:
m location of package: {L,R, T}
m location of truck: {L, R}
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Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T =(SL,c,T,sp,Ss), where

S is a finite set of states,

L is a finite set of (transition) labels (or actions),

|

|

mc:L— RBL is a label cost function,

m T :S5SxLxSw+—[0,1]is the transition function,
m sy € S is the initial state, and

m S, C S is the set of goal states.

For all s € S and ¢ € L with T(s,¢,s') > 0 for some s’ € S,
we require Y s T(s,4,5') =1.

Note: An SSP is the probabilistic pendant of a transition system.
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Reminder: Transition System Example

Logistics problem with one package, one truck, two locations:
m location of package: {L,R, T}
m location of truck: {L, R}

m if truck moves with package, 20% chance of losing package
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Markov Decision Process

Definition (Markov Decision Process)

A (discounted reward) Markov decision process (MDP) is a 6-tuple
T =(S LR, T,sp, ), where

S is a finite set of states,

L is a finite set of (transition) labels (or actions),

]
|

m R:S x L— R is the reward function,

m 7T:5xLxS~—1]0,1] is the transition function,

m sp € S is the initial state, and

v € (0,1) is the discount factor.

For all s € S and ¢ € L with T(s,¢,s") > 0 for some s’ € S, we

require > .5 T(s,4,5') = 1.
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Example: Grid World

1

1 2 3 4

®m moving north goes east with probability 0.4

m only applicable action in (4,2) and (4,3) is collect, which
m sets position back to (1,1)
m gives reward of +1 in (4,3)
m gives reward of —1 in (4,2)
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Terminology (1)

. H .
m If p:=T(s,£,5') >0, we write s = 5" or s 25 s’ if not
interested in /.
. ¢ .
If T(s,¢,s") =1, we also write s — s’ or s — s’ if not
interested in /.

If T(s,¢,s") >0 for some s’ we say that ¢ is applicable in s.

The set of applicable actions in s is L(s).
We assume that L(s) # 0 for all s € S.
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Terminology (2)

m the successor set of s and / is
succ(s,l) ={s' € S| T(s,¢,s") > 0}
m s’ is a successor of s if s’ € succ(s, £) for some £

m with s’ ~ succ(s, £) we denote that successor s’ € succ(s, £) of
s and £ is sampled according to probability distribution T
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Terminology (3)

m s’ is reachable from s if there exists a sequence of transitions

sopl—:tﬁ>51, o, sl Pribnonst 0 —sand s" = ¢
m Note: n =0 possible; then s = s’
m s0 ... s"is called (state) path from s to s’
m (1,...,¢, is called (action) path from s to s’
m length of path is n
m cost of path in SSPis "7, ¢(¢;) and

reward of path in MDP is Y7 | v "1R(si_1,¢))
m s’ is reached from s through this path
with probability []]_; pi
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Solutions in SSPs

(W=()=—={R—(")
move-L, pickup, move-R, drop

m solution in deterministic transition systems is plan, i.e., a goal
path from sy to some s, € S,

m cheapest plan is optimal solution

m deterministic agent that executes plan will reach goal
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Solutions in SSPs

move-L, pickup, move-R, drop

m probabilistic agent will not reach goal or cannot execute plan
m non-determinism can lead to different outcome than
anticipated in plan

B require a more general solution: a policy
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Solutions in SSPs

pickup

m policy must be allowed to be cyclic
m policy must be able to branch over outcomes

m policy assigns applicable actions to states
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Policy for SSPs

Definition (Policy for SSPs)
Let 7 =(S,L,c, T,so, Si) be an SSP. A policy for T is a mapping
m:S — LU{L} such that 7(s) € L(s) U{L} for all s.

The set of reachable states S;(s) from s under 7 is defined
recursively as the smallest set satisfying the rules

m s € Sy(s) and
m succ(s’, 7(s")) C Sx(s) for all s € S;(s)\ Sk where 7(s’) # L.
If m(s") # L for all s' € Si(s), then 7 is executable in s.
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Policy Representation

m size of explicit representation of executable policy 7 is |Sx(so)|
m often, |S;(so)| similar to |S|
m compact policy representation, e.g. via value function

approximation or neural networks, is active research area
= not covered in this course

m instead, we consider small state spaces for basic algorithms

m or online planning where planning for the current state sp is
interleaved with execution of 7(sp)
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Policy for MDPs

Definition (Policy for MDPs)
Let 7 =(S,L,R, T,sp,7y) be an MDP. A policy for 7 is a
mapping 7 : S — LU { L} such that 7(s) € L(s) U{L} for all s.

The set of reachable states S;(s) from s under 7 is defined
recursively as the smallest set satisfying the rules

m s € Sy(s) and
m succ(s’, 7(s")) C Sx(s) for all s € S;(s) where 7(s’) # L.
If w(s") # L for all s" € Sz(s), then 7 is executable in s.
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Summary

Many planning scenarios beyond classical planning

[
m Part F and G are on probabilistic planning

m SSPs are classical planning + probabilistic transition function
[

MDPs allow state-dependent rewards that are
discounted over an infinite horizon

Solutions of SSPs and MDPs are policies

Policies consider branching and cycles



	Motivation
	

	Markov Decision Process
	

	Policy
	

	Summary
	


