

Planning and Optimization

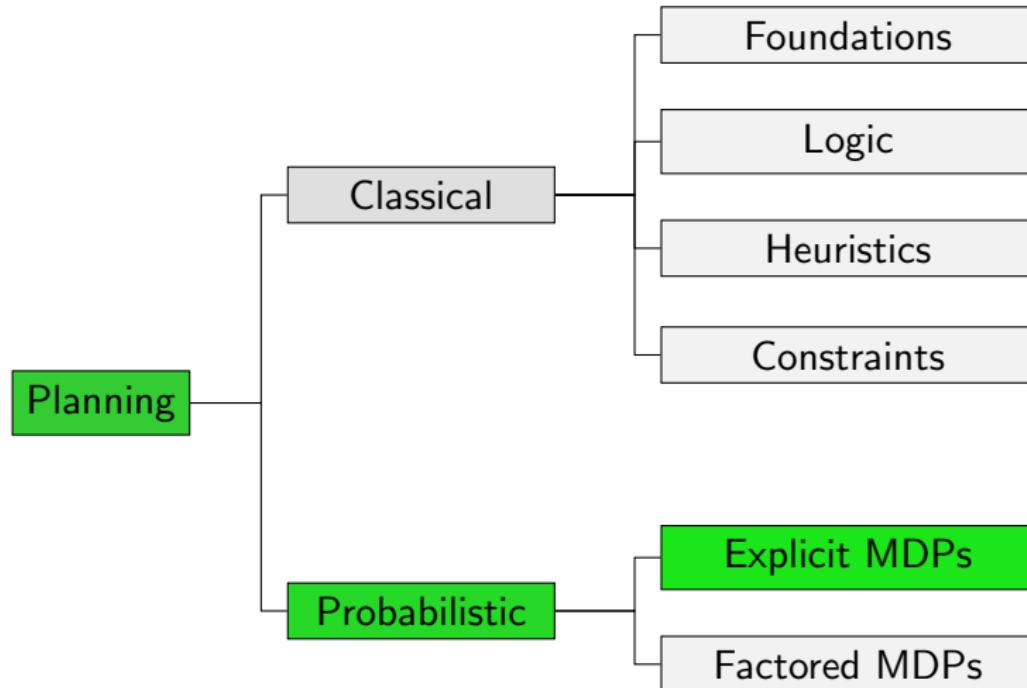
F1. Markov Decision Processes

Malte Helmert and Thomas Keller

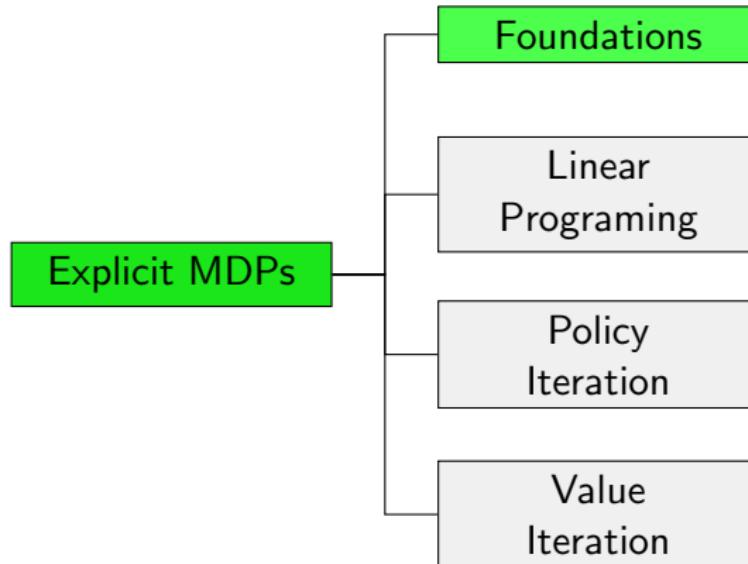
Universität Basel

November 27, 2019

Content of this Course



Content of this Course: Explicit MDPs



Motivation
●oooooooo

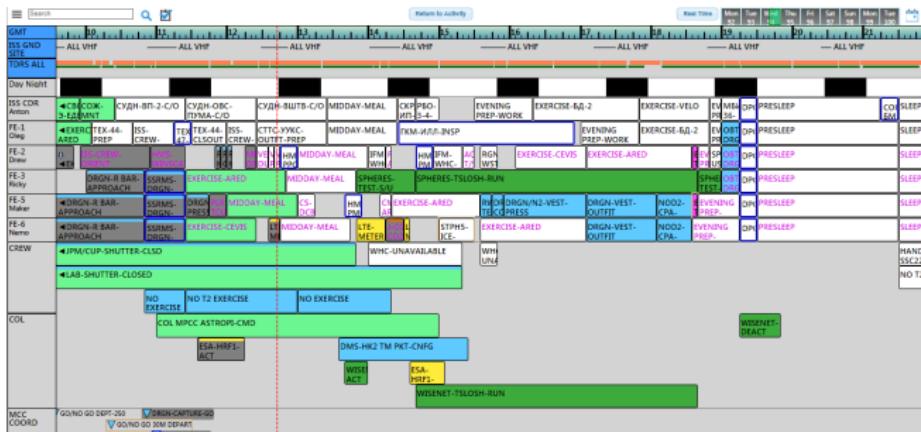
Markov Decision Process
oooooooooooo

Policy
oooooooo

Summary
oo

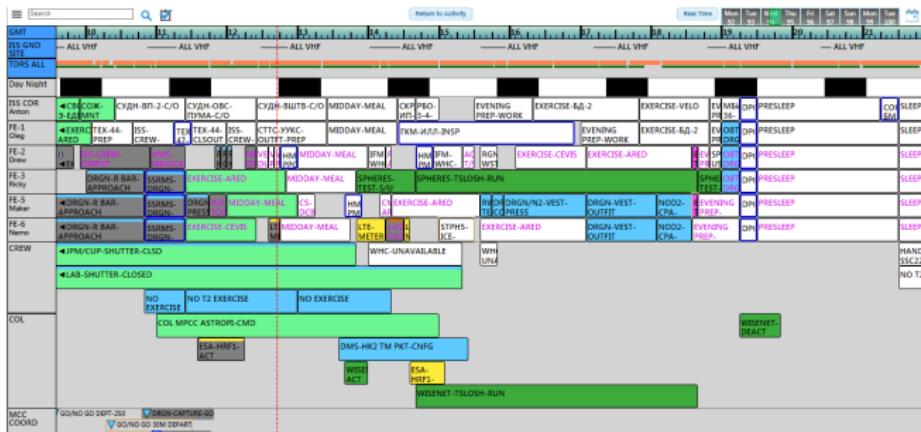
Motivation

Limitations of Classical Planning



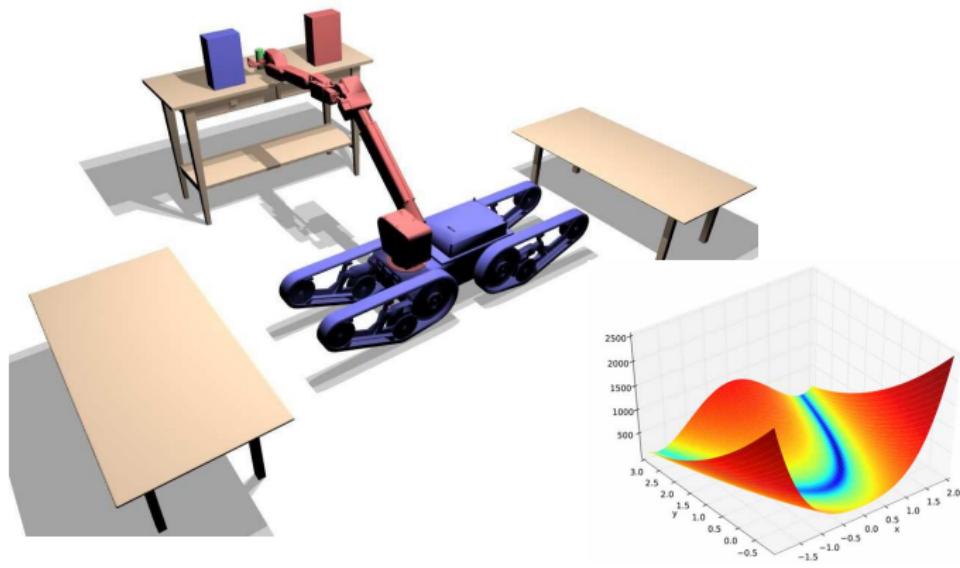
■ timetable for astronauts on ISS

Generalization of Classical Planning: **Temporal Planning**



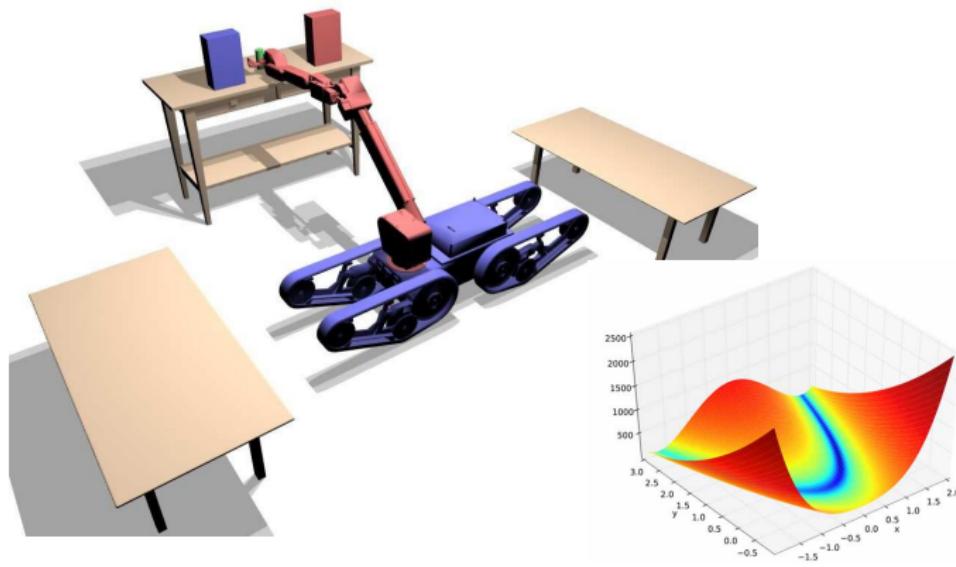
- timetable for astronauts on ISS
- **concurrency** required for some experiments
- optimize **makespan**

Limitations of Classical Planning



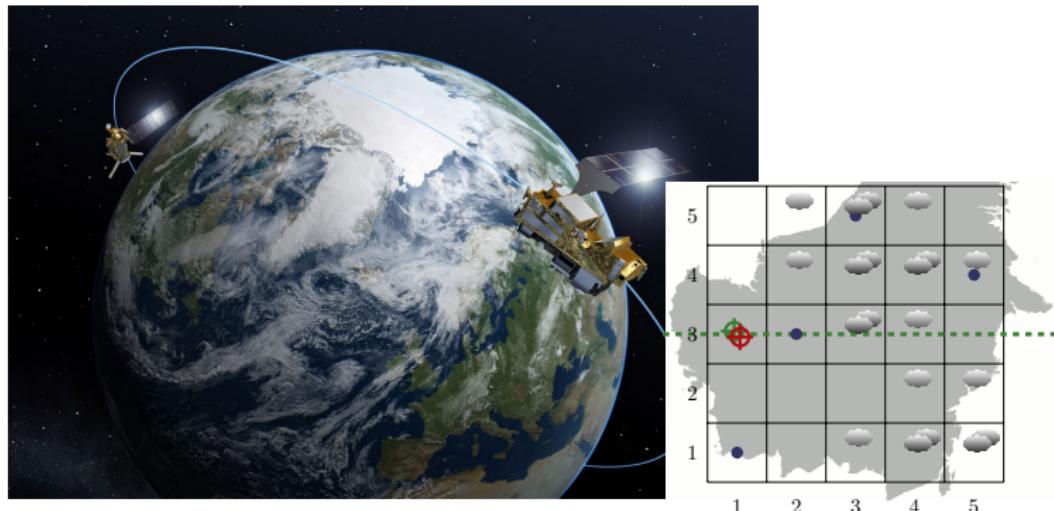
- kinematics of robotic arm

Generalization of Classical Planning: Numeric Planning



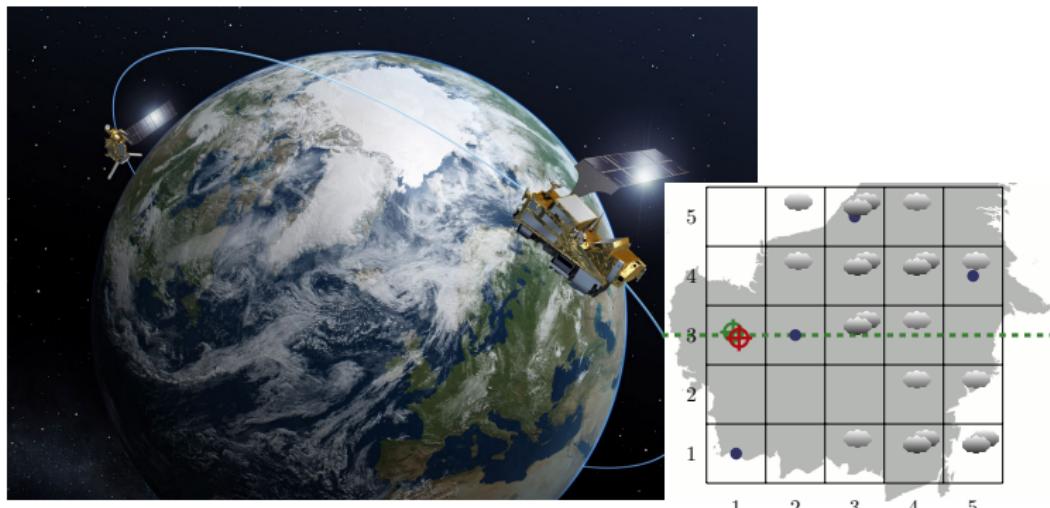
- kinematics of robotic arm
- state space is **continuous**
- preconditions and effects described by **complex functions**

Limitations of Classical Planning



- satellite takes images of patches on earth

Generalization of Classical Planning: MDPs



- satellite takes images of patches on earth
- weather forecast is **uncertain**
- find solution with lowest **expected cost**

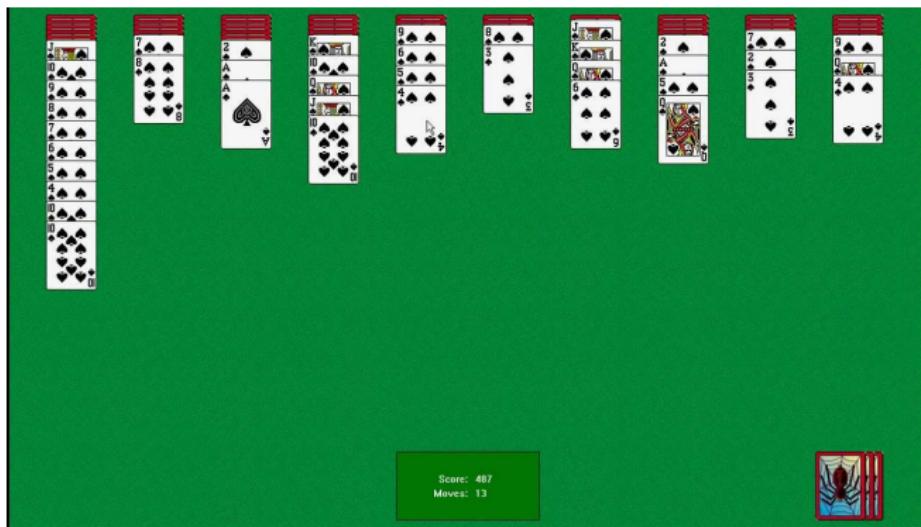
Limitations of Classical Planning

- Chess

Generalization of Classical Planning: Multiplayer Games

- Chess
- there is an **opponent** with a **contradictory objective**

Limitations of Classical Planning



■ Solitaire

Generalization of Classical Planning: POMDPs

- Solitaire
- some state information cannot be **observed**
- must reason over **belief** for good behaviour

Limitations of Classical Planning

- many applications are **combinations** of these
- all of these are **active research areas**
- we focus on one of them:
probabilistic planning with Markov decision processes
- MDPs are closely related to **games** (Why?)

Motivation
oooooooo

Markov Decision Process
●oooooooooooo

Policy
oooooooo

Summary
oo

Markov Decision Process

Markov Decision Processes

- Markov decision processes (MDPs) studied since the **1950s**
- Work up to 1980s mostly on theory and basic algorithms for **small to medium sized MDPs** (\rightsquigarrow Part F)
- Today, focus on **large**, factored MDPs (\rightsquigarrow Part G)
- Fundamental datastructure for **reinforcement learning** (not covered in this course)
- and for **probabilistic planning**
- different **variants** exist

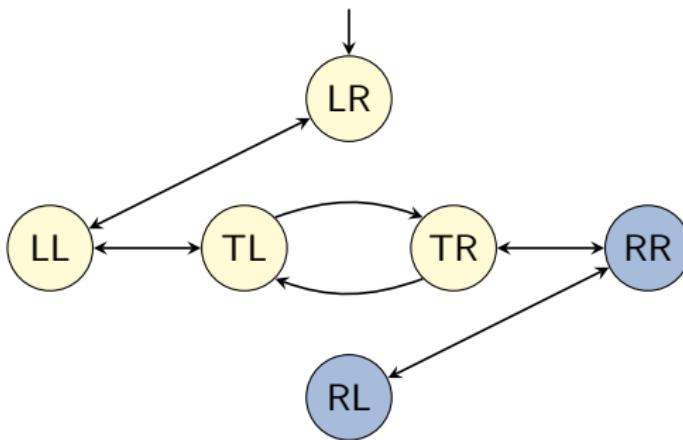
Reminder: Transition Systems

Definition (Transition System)

A **transition system** is a 6-tuple $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ where

- S is a finite set of **states**,
- L is a finite set of (transition) **labels**,
- $c : L \rightarrow \mathbb{R}_0^+$ is a **label cost** function,
- $T \subseteq S \times L \times S$ is the **transition relation**,
- $s_0 \in S$ is the **initial state**, and
- $S_* \subseteq S$ is the set of **goal states**.

Reminder: Transition System Example



Logistics problem with one package, one truck, two locations:

- location of **package**: $\{L, R, T\}$
- location of **truck**: $\{L, R\}$

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A **stochastic shortest path problem** (SSP) is a 6-tuple

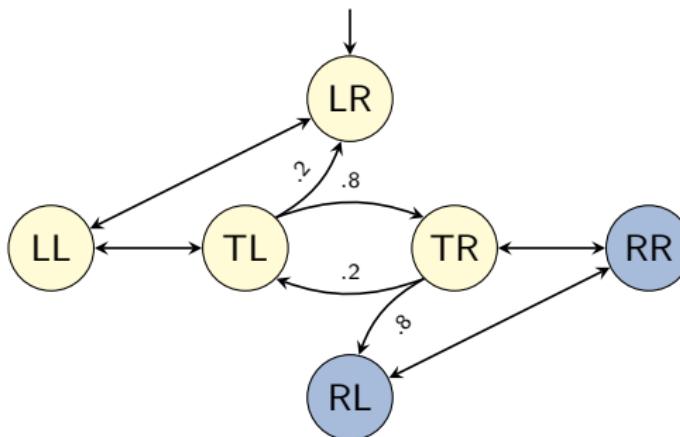
$\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$, where

- S is a finite set of states,
- L is a finite set of (transition) labels (or actions),
- $c : L \rightarrow \mathbb{R}_0^+$ is a label cost function,
- $T : S \times L \times S \mapsto [0, 1]$ is the transition function,
- $s_0 \in S$ is the initial state, and
- $S_* \subseteq S$ is the set of goal states.

For all $s \in S$ and $\ell \in L$ with $T(s, \ell, s') > 0$ for some $s' \in S$, we require $\sum_{s' \in S} T(s, \ell, s') = 1$.

Note: An SSP is the probabilistic pendant of a transition system.

Reminder: Transition System Example



Logistics problem with one package, one truck, two locations:

- location of **package**: $\{L, R, T\}$
- location of **truck**: $\{L, R\}$
- if truck moves with package, 20% chance of losing package

Markov Decision Process

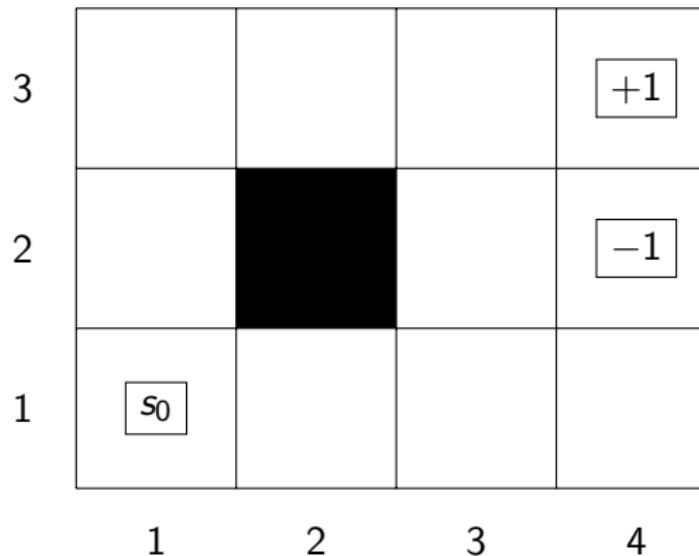
Definition (Markov Decision Process)

A (discounted reward) **Markov decision process** (MDP) is a 6-tuple $\mathcal{T} = \langle S, L, R, T, s_0, \gamma \rangle$, where

- S is a finite set of states,
- L is a finite set of (transition) labels (or actions),
- $R : S \times L \rightarrow \mathbb{R}$ is the reward function,
- $T : S \times L \times S \mapsto [0, 1]$ is the transition function,
- $s_0 \in S$ is the initial state, and
- $\gamma \in (0, 1)$ is the **discount factor**.

For all $s \in S$ and $\ell \in L$ with $T(s, \ell, s') > 0$ for some $s' \in S$, we require $\sum_{s' \in S} T(s, \ell, s') = 1$.

Example: Grid World



- moving *north* goes *east* with probability 0.4
- only applicable action in (4,2) and (4,3) is *collect*, which
 - sets position back to (1,1)
 - gives reward of +1 in (4,3)
 - gives reward of -1 in (4,2)

Terminology (1)

- If $p := T(s, \ell, s') > 0$, we write $s \xrightarrow{p:\ell} s'$ or $s \xrightarrow{p} s'$ if not interested in ℓ .
- If $T(s, \ell, s') = 1$, we also write $s \xrightarrow{\ell} s'$ or $s \rightarrow s'$ if not interested in ℓ .
- If $T(s, \ell, s') > 0$ for some s' we say that ℓ is **applicable** in s .
- The set of **applicable actions** in s is $L(s)$.
We assume that $L(s) \neq \emptyset$ for all $s \in S$.

Terminology (2)

- the **successor set** of s and ℓ is
$$\text{succ}(s, \ell) = \{s' \in S \mid T(s, \ell, s') > 0\}$$
- s' is a **successor** of s if $s' \in \text{succ}(s, \ell)$ for some ℓ
- with $s' \sim \text{succ}(s, \ell)$ we denote that successor $s' \in \text{succ}(s, \ell)$ of s and ℓ is **sampled** according to **probability distribution** T

Terminology (3)

- s' is reachable from s if there exists a sequence of transitions

$$s^0 \xrightarrow{p_1:\ell_1} s^1, \dots, s^{n-1} \xrightarrow{p_n:\ell_n} s^n \text{ s.t. } s^0 = s \text{ and } s^n = s'$$

- Note: $n = 0$ possible; then $s = s'$
- s^0, \dots, s^n is called **(state) path** from s to s'
- ℓ_1, \dots, ℓ_n is called **(action) path** from s to s'
- length of path is n
- cost of path in SSP is $\sum_{i=1}^n c(\ell_i)$ and
reward of path in MDP is $\sum_{i=1}^n \gamma^{i-1} R(s_{i-1}, \ell_i)$
- s' is reached from s through this path
with probability $\prod_{i=1}^n p_i$

Motivation
oooooooo

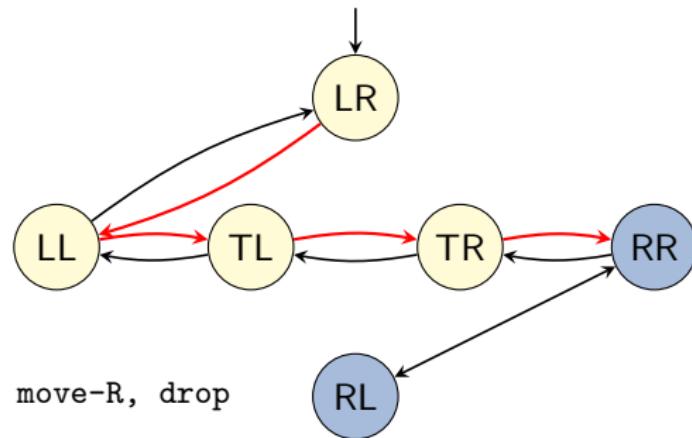
Markov Decision Process
oooooooooooo

Policy
●oooooooo

Summary
oo

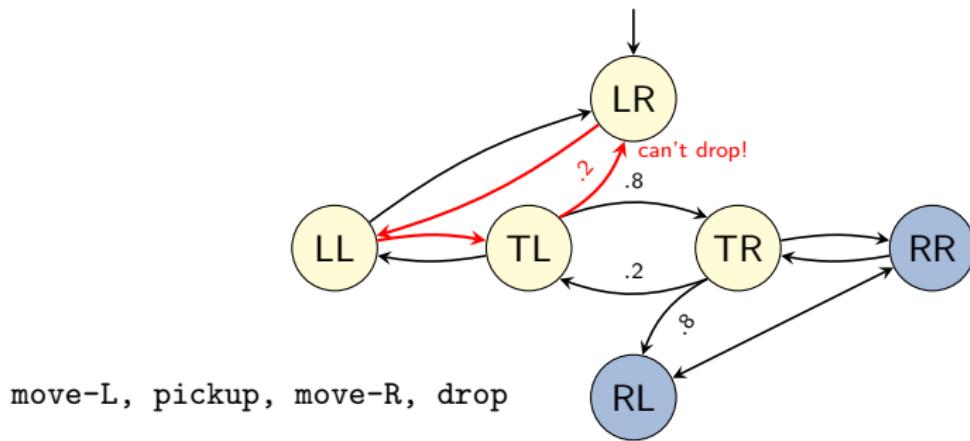
Policy

Solutions in SSPs



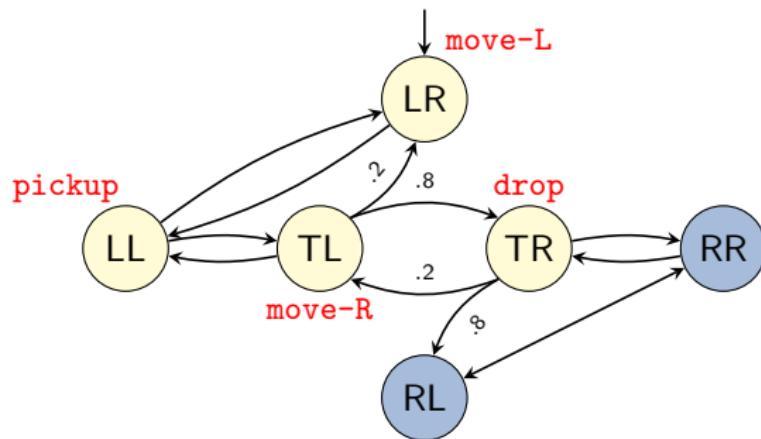
- solution in deterministic transition systems is **plan**, i.e., a goal path from s_0 to some $s_* \in S_*$
- **cheapest plan is optimal solution**
- deterministic agent that **executes** plan will reach goal

Solutions in SSPs



- probabilistic agent **will not reach goal** or **cannot execute** plan
- non-determinism can lead to **different outcome** than **anticipated** in plan
- require a more general solution: a **policy**

Solutions in SSPs



- policy must be allowed to be **cyclic**
- policy must be able to **branch** over outcomes
- policy assigns **applicable actions** to states

Policy for SSPs

Definition (Policy for SSPs)

Let $\mathcal{T} = \langle S, L, c, T, s_0, S_* \rangle$ be an SSP. A **policy** for \mathcal{T} is a mapping $\pi : S \rightarrow L \cup \{\perp\}$ such that $\pi(s) \in L(s) \cup \{\perp\}$ for all s .

The set of **reachable states** $S_\pi(s)$ from s under π is defined recursively as the smallest set satisfying the rules

- $s \in S_\pi(s)$ and
- $\text{succ}(s', \pi(s')) \subseteq S_\pi(s)$ for all $s' \in S_\pi(s) \setminus S_*$ where $\pi(s') \neq \perp$.

If $\pi(s') \neq \perp$ for all $s' \in S_\pi(s)$, then π is **executable in s** .

Policy Representation

- size of **explicit representation** of executable policy π is $|S_\pi(s_0)|$
- often, $|S_\pi(s_0)|$ similar to $|S|$
- **compact** policy representation, e.g. via value function approximation or neural networks, is active research area
⇒ not covered in this course
- instead, we consider **small state spaces** for basic algorithms
- or **online** planning where planning for the current state s_0 is interleaved with **execution** of $\pi(s_0)$

Policy for MDPs

Definition (Policy for MDPs)

Let $\mathcal{T} = \langle S, L, R, T, s_0, \gamma \rangle$ be an MDP. A policy for \mathcal{T} is a mapping $\pi : S \rightarrow L \cup \{\perp\}$ such that $\pi(s) \in L(s) \cup \{\perp\}$ for all s .

The set of **reachable states** $S_\pi(s)$ from s under π is defined recursively as the smallest set satisfying the rules

- $s \in S_\pi(s)$ and
- $\text{succ}(s', \pi(s')) \subseteq S_\pi(s)$ for all $s' \in S_\pi(s)$ where $\pi(s') \neq \perp$.

If $\pi(s') \neq \perp$ for all $s' \in S_\pi(s)$, then π is **executable in s** .

Motivation
oooooooo

Markov Decision Process
oooooooooooo

Policy
ooooooo

Summary
●○

Summary

Summary

- Many planning scenarios **beyond classical planning**
- Part F and G are on probabilistic planning
- SSPs are classical planning + **probabilistic transition function**
- MDPs allow **state-dependent rewards** that are **discounted** over an **infinite horizon**
- Solutions of SSPs and MDPs are **policies**
- Policies consider **branching** and **cycles**