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Content of this Course: Explicit MDPs
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Motivation
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Limitations of Classical Planning

timetable for astronauts on ISS

concurrency required for some experiments

optimize makespan
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Generalization of Classical Planning: Temporal Planning

timetable for astronauts on ISS

concurrency required for some experiments

optimize makespan
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Limitations of Classical Planning

kinematics of robotic arm

state space is continuous

preconditions and effects described by complex functions
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Generalization of Classical Planning: Numeric Planning

kinematics of robotic arm

state space is continuous

preconditions and effects described by complex functions
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Limitations of Classical Planning
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satellite takes images of patches on earth

weather forecast is uncertain

find solution with lowest expected cost
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Generalization of Classical Planning: MDPs
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satellite takes images of patches on earth

weather forecast is uncertain

find solution with lowest expected cost
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Limitations of Classical Planning

Chess

there is an opponent with a contradictory objective
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Generalization of Classical Planning: Multiplayer Games

Chess

there is an opponent with a contradictory objective
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Limitations of Classical Planning

Solitaire

some state information cannot be observed

must reason over belief for good behaviour
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Generalization of Classical Planning: POMDPs

Solitaire

some state information cannot be observed

must reason over belief for good behaviour
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Limitations of Classical Planning

many applications are combinations of these

all of these are active research areas

we focus on one of them:
probabilistic planning with Markov decision processes

MDPs are closely related to games (Why?)



Motivation Markov Decision Process Policy Summary

Markov Decision Process
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Markov Decision Processes

Markov decision processes (MDPs) studied since the 1950s

Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs ( Part F)

Today, focus on large, factored MDPs ( Part G)

Fundamental datastructure for reinforcement learning
(not covered in this course)

and for probabilistic planning

different variants exist
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Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = 〈S , L, c ,T , s0, S?〉 where

S is a finite set of states,

L is a finite set of (transition) labels,

c : L→ R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S? ⊆ S is the set of goal states.
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Reminder: Transition System Example

LR

LL TL

RL

TR RR

Logistics problem with one package, one truck, two locations:

location of package: {L,R,T}
location of truck: {L,R}
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Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T = 〈S , L, c ,T , s0, S?〉, where

S is a finite set of states,

L is a finite set of (transition) labels (or actions),

c : L→ R+
0 is a label cost function,

T : S × L× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

S? ⊆ S is the set of goal states.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S ,
we require

∑
s′∈S T (s, `, s ′) = 1.

Note: An SSP is the probabilistic pendant of a transition system.
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Reminder: Transition System Example

LR

LL TL

RL

TR RR

.8.2

.2

.8
Logistics problem with one package, one truck, two locations:

location of package: {L,R,T}
location of truck: {L,R}
if truck moves with package, 20% chance of losing package
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Markov Decision Process

Definition (Markov Decision Process)

A (discounted reward) Markov decision process (MDP) is a 6-tuple
T = 〈S , L,R,T , s0, γ〉, where

S is a finite set of states,

L is a finite set of (transition) labels (or actions),

R : S × L→ R is the reward function,

T : S × L× S 7→ [0, 1] is the transition function,

s0 ∈ S is the initial state, and

γ ∈ (0, 1) is the discount factor.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.
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Example: Grid World

1 2 3 4

1

2

3

s0

−1

+1

moving north goes east with probability 0.4
only applicable action in (4,2) and (4,3) is collect, which

sets position back to (1,1)
gives reward of +1 in (4,3)
gives reward of −1 in (4,2)
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Terminology (1)

If p := T (s, `, s ′) > 0, we write s
p:`−−→ s ′ or s

p−→ s ′ if not
interested in `.

If T (s, `, s ′) = 1, we also write s
`−→ s ′ or s → s ′ if not

interested in `.

If T (s, `, s ′) > 0 for some s ′ we say that ` is applicable in s.

The set of applicable actions in s is L(s).
We assume that L(s) 6= ∅ for all s ∈ S .
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Terminology (2)

the successor set of s and ` is
succ(s, `) = {s ′ ∈ S | T (s, `, s ′) > 0}
s ′ is a successor of s if s ′ ∈ succ(s, `) for some `

with s ′ ∼ succ(s, `) we denote that successor s ′ ∈ succ(s, `) of
s and ` is sampled according to probability distribution T
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Terminology (3)

s ′ is reachable from s if there exists a sequence of transitions

s0
p1:`1−−−→ s1, . . . , sn−1

pn:`n−−−→ sn s.t. s0 = s and sn = s ′

Note: n = 0 possible; then s = s ′

s0, . . . , sn is called (state) path from s to s ′

`1, . . . , `n is called (action) path from s to s ′

length of path is n
cost of path in SSP is

∑n
i=1 c(`i ) and

reward of path in MDP is
∑n

i=1 γ
i−1R(si−1, `i )

s ′ is reached from s through this path
with probability

∏n
i=1 pi
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Policy
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Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

solution in deterministic transition systems is plan, i.e., a goal
path from s0 to some s? ∈ S?

cheapest plan is optimal solution

deterministic agent that executes plan will reach goal
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Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

.8.2

can’t drop!

.2

.8

probabilistic agent will not reach goal or cannot execute plan

non-determinism can lead to different outcome than
anticipated in plan

require a more general solution: a policy
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Solutions in SSPs

LR

move-L

LL

pickup

TL

move-R

RL

TR

drop

RR

move-L, pickup, move-R, drop

.8.2

.2

.8

policy must be allowed to be cyclic

policy must be able to branch over outcomes

policy assigns applicable actions to states
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Policy for SSPs

Definition (Policy for SSPs)

Let T = 〈S , L, c ,T , s0,S?〉 be an SSP. A policy for T is a mapping
π : S → L ∪ {⊥} such that π(s) ∈ L(s) ∪ {⊥} for all s.

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

s ∈ Sπ(s) and

succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) \S? where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s), then π is executable in s.
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Policy Representation

size of explicit representation of executable policy π is |Sπ(s0)|
often, |Sπ(s0)| similar to |S |
compact policy representation, e.g. via value function
approximation or neural networks, is active research area
⇒ not covered in this course

instead, we consider small state spaces for basic algorithms

or online planning where planning for the current state s0 is
interleaved with execution of π(s0)
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Policy for MDPs

Definition (Policy for MDPs)

Let T = 〈S , L,R,T , s0, γ〉 be an MDP. A policy for T is a
mapping π : S → L ∪ {⊥} such that π(s) ∈ L(s) ∪ {⊥} for all s.

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

s ∈ Sπ(s) and

succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s), then π is executable in s.
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Summary
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Summary

Many planning scenarios beyond classical planning

Part F and G are on probabilistic planning

SSPs are classical planning + probabilistic transition function

MDPs allow state-dependent rewards that are
discounted over an infinite horizon

Solutions of SSPs and MDPs are policies

Policies consider branching and cycles
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