

<text><image><image><image><image><image>

Motivation

Generalization of Classical Planning: Multiplayer Games

Chess

there is an opponent with a contradictory objective

M. Helmert, T. Keller (Universität Basel) Planning and Optimization

F1. Markov Decision Processes

Generalization of Classical Planning: POMDPs

November 27, 2019

9 / 31

Motivation

- If $p := T(s, \ell, s') > 0$, we write $s \xrightarrow{p:\ell} s'$ or $s \xrightarrow{p} s'$ if not interested in ℓ .
- If $T(s, \ell, s') = 1$, we also write $s \xrightarrow{\ell} s'$ or $s \rightarrow s'$ if not interested in ℓ
- If $T(s, \ell, s') > 0$ for some s' we say that ℓ is applicable in s.
- \blacktriangleright The set of applicable actions in s is L(s). We assume that $L(s) \neq \emptyset$ for all $s \in S$.

Planning and Optimization

2

1

*s*0

1

sets position back to (1,1) gives reward of +1 in (4,3)gives reward of -1 in (4.2)

moving north goes east with probability 0.4

2

 \triangleright only applicable action in (4,2) and (4,3) is *collect*, which

Planning and Optimization

3

November 27, 2019 19 / 31

 $^{-1}$

4

Markov Decision Process

18 / 31

Markov Decision Process

Policy

Policy for MDPs

Definition (Policy for MDPs)

Let $\mathcal{T} = \langle S, L, R, T, s_0, \gamma \rangle$ be an MDP. A policy for \mathcal{T} is a mapping $\pi : S \to L \cup \{\bot\}$ such that $\pi(s) \in L(s) \cup \{\bot\}$ for all s. The set of reachable states $S_{\pi}(s)$ from s under π is defined recursively as the smallest set satisfying the rules

 \blacktriangleright $s \in S_{\pi}(s)$ and

▶ succ($s', \pi(s')$) ⊆ $S_{\pi}(s)$ for all $s' \in S_{\pi}(s)$ where $\pi(s') \neq \bot$. If $\pi(s') \neq \bot$ for all $s' \in S_{\pi}(s)$, then π is executable in s.

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

F1. Markov Decision Processes
Summary
Many planning scenarios beyond classical planning
Part F and G are on probabilistic planning
SSPs are classical planning + probabilistic transition function
MDPs allow state-dependent rewards that are discounted over an infinite horizon
Solutions of SSPs and MDPs are policies
Policies consider branching and cycles

November 27, 2019 31 / 31

November 27, 2019

29 / 31

Summan