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F1.1 Motivation
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F1. Markov Decision Processes Motivation

Generalization of Classical Planning: Temporal Planning
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» timetable for astronauts on ISS
> concurrency required for some experiments

P optimize makespan
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Motivation

F1. Markov Decision Processes Motivation

Generalization of Classical Planning: Numeric Planning

» kinematics of robotic arm

> state space is continuous
» preconditions and effects described by complex functions

F1. Markov Decision Processes

Generalization of Classical Planning: MDPs

> satellite takes images of patches on earth

» weather forecast is uncertain
> find solution with lowest expected cost
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F1. Markov Decision Processes Motivation

Generalization of Classical Planning: Multiplayer Games

» Chess

> there is an opponent with a contradictory objective
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F1. Markov Decision Processes Motivation

Generalization of Classical Planning: POMDPs

» Solitaire
» some state information cannot be observed

» must reason over belief for good behaviour
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F1. Markov Decision Processes Motivation

Limitations of Classical Planning

P> many applications are combinations of these
> all of these are active research areas

> we focus on one of them:
probabilistic planning with Markov decision processes

» MDPs are closely related to games (Why?)
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F1. Markov Decision Processes Markov Decision Process

F1.2 Markov Decision Process

M. Helmert, T. Keller (Universitat Basel) Planning and Optimization November 27, 2019 12 /31




F1. Markov Decision Processes Markov Decision Process

Markov Decision Processes

» Markov decision processes (MDPs) studied since the 1950s

» Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs (~» Part F)

» Today, focus on large, factored MDPs (~ Part G)

» Fundamental datastructure for reinforcement learning
(not covered in this course)

» and for probabilistic planning

» different variants exist
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F1. Markov Decision Processes

Reminder: Transition Systems

Definition (Transition System)
A transition system is a 6-tuple 7 = (S, L, ¢, T, sp, Sx) where
> S is a finite set of states,
» L is a finite set of (transition) labels,
> c:L— R{ is a label cost function,
> T C S xL xS isthe transition relation,
> sy € S is the initial state, and
> S, C S is the set of goal states.
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F1. Markov Decision Processes Markov Decision Process

Reminder: Transition System Example

Logistics problem with one package, one truck, two locations:
» location of package: {L,R, T}
» location of truck: {L, R}
November 27, 2019 15 /31
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F1. Markov Decision Processes

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)
A stochastic shortest path problem (SSP) is a 6-tuple
T=(S,Lc, T,sp,S), where
> S is a finite set of states,
» L is a finite set of (transition) labels (or actions),
> c:L— Ry is a label cost function,
> T:S5xLxSw+—[0,1] is the transition function,
> 5o € S is the initial state, and
> S, C S is the set of goal states.
For all s € S and ¢ € L with T(s,¢,s") > 0 for some s’ € S,
we require Y .5 T(s,4,5) =1.

Note: An SSP is the probabilistic pendant of a transition system.
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F1. Markov Decision Processes Markov Decision Process

Reminder: Transition System Example

Logistics problem with one package, one truck, two locations:
» location of package: {L,R, T}
» location of truck: {L, R}
» if truck moves with package, 20% chance of losing package
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F1. Markov Decision Processes Markov Decision Process

Markov Decision Process

Definition (Markov Decision Process)
A (discounted reward) Markov decision process (MDP) is a 6-tuple
T =(SL/R,T,sp,7), where

> S is a finite set of states,

» L is a finite set of (transition) labels (or actions),

» R:S xL— Risthe reward function,

» T:SxLxS5—]0,1] is the transition function,

» sp € S is the initial state, and

» ~ € (0,1) is the discount factor.

For all s € S and ¢ € L with T(s,¢,s") > 0 for some s’ € S, we
require Y s T(s,4,5") = 1.
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F1. Markov Decision Processes Markov Decision Process

Example: Grid World

1

1 2 3 4

» moving north goes east with probability 0.4

» only applicable action in (4,2) and (4,3) is collect, which
> sets position back to (1,1)
> gives reward of +1 in (4,3)
> gives reward of —1 in (4,2)
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F1. Markov Decision Processes Markov Decision Process

Terminology (1)

> If p:=T(s,¢,s") >0, we write s Lo or s B s if ot
interested in /.

> If T(s,4,s") =1, we also write s L s ors— s if not
interested in /.

> If T(s,¢,s") > 0 for some s’ we say that ¢ is applicable in s.

» The set of applicable actions in s is L(s).
We assume that L(s) # () for all s € S.
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F1. Markov Decision Processes Markov Decision Process

Terminology (2)

» the successor set of s and £ is
succ(s, ) ={s' € S| T(s,¢,s") > 0}
» s’ is a successor of s if s’ € succ(s, ¢) for some ¢

» with s’ ~ succ(s, ) we denote that successor s’ € succ(s, ¢) of
s and / is sampled according to probability distribution T
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F1. Markov Decision Processes

Terminology (3)

» s’ is reachable from s if there exists a sequence of transitions

SO Pl g1 gt Pl an gt 0 —sand 5" = ¢
» Note: n =0 possible; then s = s’
> 0 ..., s"is called (state) path from s to s’
» {y,...,0,is called (action) path from s to s’
» length of path is n
> cost of path in SSPis -7, ¢(¢;) and

reward of path in MDP is Y7, v/ " R(s;_1, {;)
s’ is reached from s through this path

with probability T]7_; pi

v

Markov Decision Process

F1. Markov Decision Processes Policy

F1.3 Policy
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F1. Markov Decision Processes Policy
Solutions in SSPs
move-L, pickup, move-R, drop
> solution in deterministic transition systems is plan, i.e., a goal
path from sy to some s, € S,
» cheapest plan is optimal solution
P deterministic agent that executes plan will reach goal
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F1. Markov Decision Processes

Solutions in SSPs

> policy must be allowed to be cyclic
» policy must be able to branch over outcomes

P policy assigns applicable actions to states

Policy

F1. Markov Decision Processes Policy
Solutions in SSPs
move-L, pickup, move-R, drop
P probabilistic agent will not reach goal or cannot execute plan
P non-determinism can lead to different outcome than
anticipated in plan
P require a more general solution: a policy
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F1. Markov Decision Processes Policy
Policy for SSPs
Definition (Policy for SSPs)
Let 7 =(S,L,c, T,so,Ss) be an SSP. A policy for T is a mapping
m:5 — LU{L} such that w(s) € L(s) U{L} forall s.
The set of reachable states S;(s) from s under 7 is defined
recursively as the smallest set satisfying the rules
» s e 5:(s) and
» succ(s’, m(s")) C Sx(s) for all s € S;(s)\ Sx where 7(s’) # L.
If m(s") # L for all ' € S;(s), then 7 is executable in s.
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F1. Markov Decision Processes Policy
Policy Representation
> size of explicit representation of executable policy 7 is |Sx(so)|
> often, |S(so)| similar to |S]
» compact policy representation, e.g. via value function
approximation or neural networks, is active research area
= not covered in this course
> instead, we consider small state spaces for basic algorithms
> or online planning where planning for the current state sp is
interleaved with execution of 7(sp)
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F1. Markov Decision Processes Policy

Policy for MDPs

Definition (Policy for MDPs)
Let 7 =(S,L,R, T,so,7) be an MDP. A policy for T is a
mapping 7 : S — LU {L} such that 7(s) € L(s) U{L} for all s.
The set of reachable states S;(s) from s under 7 is defined
recursively as the smallest set satisfying the rules

» s e S5y(s) and

» succ(s’, m(s")) C Si(s) for all s € S;(s) where 7(s’) # L.
If m(s’) # L for all s’ € S;(s), then 7 is executable in s.
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F1.4 Summary
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F1. Markov Decision Processes Summary

Summary

Many planning scenarios beyond classical planning
Part F and G are on probabilistic planning

SSPs are classical planning 4+ probabilistic transition function

vvyyvyy

MDPs allow state-dependent rewards that are
discounted over an infinite horizon

Solutions of SSPs and MDPs are policies

vy

Policies consider branching and cycles
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