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F1.1 Motivation
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F1. Markov Decision Processes Motivation

Generalization of Classical Planning: Temporal Planning

I timetable for astronauts on ISS

I concurrency required for some experiments

I optimize makespan

M. Helmert, T. Keller (Universität Basel) Planning and Optimization November 27, 2019 6 / 31

F1. Markov Decision Processes Motivation

Generalization of Classical Planning: Numeric Planning

I kinematics of robotic arm
I state space is continuous
I preconditions and effects described by complex functions

M. Helmert, T. Keller (Universität Basel) Planning and Optimization November 27, 2019 7 / 31

F1. Markov Decision Processes Motivation

Generalization of Classical Planning: MDPs

1

2

3

4

5

1 2 3 4 5

I satellite takes images of patches on earth

I weather forecast is uncertain

I find solution with lowest expected cost
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F1. Markov Decision Processes Motivation

Generalization of Classical Planning: Multiplayer Games

I Chess

I there is an opponent with a contradictory objective
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F1. Markov Decision Processes Motivation

Generalization of Classical Planning: POMDPs

I Solitaire

I some state information cannot be observed

I must reason over belief for good behaviour
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F1. Markov Decision Processes Motivation

Limitations of Classical Planning

I many applications are combinations of these

I all of these are active research areas

I we focus on one of them:
probabilistic planning with Markov decision processes

I MDPs are closely related to games (Why?)
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F1. Markov Decision Processes Markov Decision Process

F1.2 Markov Decision Process
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F1. Markov Decision Processes Markov Decision Process

Markov Decision Processes

I Markov decision processes (MDPs) studied since the 1950s

I Work up to 1980s mostly on theory and basic algorithms for
small to medium sized MDPs ( Part F)

I Today, focus on large, factored MDPs ( Part G)

I Fundamental datastructure for reinforcement learning
(not covered in this course)

I and for probabilistic planning

I different variants exist
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F1. Markov Decision Processes Markov Decision Process

Reminder: Transition Systems

Definition (Transition System)

A transition system is a 6-tuple T = 〈S , L, c ,T , s0, S?〉 where

I S is a finite set of states,

I L is a finite set of (transition) labels,

I c : L→ R+
0 is a label cost function,

I T ⊆ S × L× S is the transition relation,

I s0 ∈ S is the initial state, and

I S? ⊆ S is the set of goal states.
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F1. Markov Decision Processes Markov Decision Process

Reminder: Transition System Example

LR

LL TL

RL

TR RR

Logistics problem with one package, one truck, two locations:

I location of package: {L,R,T}
I location of truck: {L,R}
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F1. Markov Decision Processes Markov Decision Process

Stochastic Shortest Path Problem

Definition (Stochastic Shortest Path Problem)

A stochastic shortest path problem (SSP) is a 6-tuple
T = 〈S , L, c ,T , s0, S?〉, where

I S is a finite set of states,

I L is a finite set of (transition) labels (or actions),

I c : L→ R+
0 is a label cost function,

I T : S × L× S 7→ [0, 1] is the transition function,

I s0 ∈ S is the initial state, and

I S? ⊆ S is the set of goal states.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S ,
we require

∑
s′∈S T (s, `, s ′) = 1.

Note: An SSP is the probabilistic pendant of a transition system.
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F1. Markov Decision Processes Markov Decision Process

Reminder: Transition System Example

LR

LL TL

RL

TR RR

.8.2

.2

.8

Logistics problem with one package, one truck, two locations:

I location of package: {L,R,T}
I location of truck: {L,R}
I if truck moves with package, 20% chance of losing package
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F1. Markov Decision Processes Markov Decision Process

Markov Decision Process

Definition (Markov Decision Process)

A (discounted reward) Markov decision process (MDP) is a 6-tuple
T = 〈S , L,R,T , s0, γ〉, where

I S is a finite set of states,

I L is a finite set of (transition) labels (or actions),

I R : S × L→ R is the reward function,

I T : S × L× S 7→ [0, 1] is the transition function,

I s0 ∈ S is the initial state, and

I γ ∈ (0, 1) is the discount factor.

For all s ∈ S and ` ∈ L with T (s, `, s ′) > 0 for some s ′ ∈ S , we
require

∑
s′∈S T (s, `, s ′) = 1.

M. Helmert, T. Keller (Universität Basel) Planning and Optimization November 27, 2019 18 / 31

F1. Markov Decision Processes Markov Decision Process

Example: Grid World

1 2 3 4
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3

s0

−1

+1

I moving north goes east with probability 0.4
I only applicable action in (4,2) and (4,3) is collect, which

I sets position back to (1,1)
I gives reward of +1 in (4,3)
I gives reward of −1 in (4,2)
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F1. Markov Decision Processes Markov Decision Process

Terminology (1)

I If p := T (s, `, s ′) > 0, we write s
p:`−−→ s ′ or s

p−→ s ′ if not
interested in `.

I If T (s, `, s ′) = 1, we also write s
`−→ s ′ or s → s ′ if not

interested in `.

I If T (s, `, s ′) > 0 for some s ′ we say that ` is applicable in s.

I The set of applicable actions in s is L(s).
We assume that L(s) 6= ∅ for all s ∈ S .
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F1. Markov Decision Processes Markov Decision Process

Terminology (2)

I the successor set of s and ` is
succ(s, `) = {s ′ ∈ S | T (s, `, s ′) > 0}

I s ′ is a successor of s if s ′ ∈ succ(s, `) for some `

I with s ′ ∼ succ(s, `) we denote that successor s ′ ∈ succ(s, `) of
s and ` is sampled according to probability distribution T
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F1. Markov Decision Processes Markov Decision Process

Terminology (3)

I s ′ is reachable from s if there exists a sequence of transitions

s0
p1:`1−−−→ s1, . . . , sn−1

pn:`n−−−→ sn s.t. s0 = s and sn = s ′

I Note: n = 0 possible; then s = s ′

I s0, . . . , sn is called (state) path from s to s ′

I `1, . . . , `n is called (action) path from s to s ′

I length of path is n
I cost of path in SSP is

∑n
i=1 c(`i ) and

reward of path in MDP is
∑n

i=1 γ
i−1R(si−1, `i )

I s ′ is reached from s through this path
with probability

∏n
i=1 pi
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F1. Markov Decision Processes Policy

F1.3 Policy
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F1. Markov Decision Processes Policy

Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

I solution in deterministic transition systems is plan, i.e., a goal
path from s0 to some s? ∈ S?

I cheapest plan is optimal solution

I deterministic agent that executes plan will reach goal
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F1. Markov Decision Processes Policy

Solutions in SSPs

LR

LL TL

RL

TR RR

move-L, pickup, move-R, drop

.8.2

can’t drop!

.2

.8

I probabilistic agent will not reach goal or cannot execute plan

I non-determinism can lead to different outcome than
anticipated in plan

I require a more general solution: a policy
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F1. Markov Decision Processes Policy

Solutions in SSPs

LR

move-L

LL

pickup

TL

move-R

RL

TR

drop

RR

move-L, pickup, move-R, drop

.8.2

.2

.8

I policy must be allowed to be cyclic

I policy must be able to branch over outcomes

I policy assigns applicable actions to states
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F1. Markov Decision Processes Policy

Policy for SSPs

Definition (Policy for SSPs)

Let T = 〈S , L, c ,T , s0,S?〉 be an SSP. A policy for T is a mapping
π : S → L ∪ {⊥} such that π(s) ∈ L(s) ∪ {⊥} for all s.

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

I s ∈ Sπ(s) and

I succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) \S? where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s), then π is executable in s.
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F1. Markov Decision Processes Policy

Policy Representation

I size of explicit representation of executable policy π is |Sπ(s0)|
I often, |Sπ(s0)| similar to |S |
I compact policy representation, e.g. via value function

approximation or neural networks, is active research area
⇒ not covered in this course

I instead, we consider small state spaces for basic algorithms

I or online planning where planning for the current state s0 is
interleaved with execution of π(s0)
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F1. Markov Decision Processes Policy

Policy for MDPs

Definition (Policy for MDPs)

Let T = 〈S , L,R,T , s0, γ〉 be an MDP. A policy for T is a
mapping π : S → L ∪ {⊥} such that π(s) ∈ L(s) ∪ {⊥} for all s.

The set of reachable states Sπ(s) from s under π is defined
recursively as the smallest set satisfying the rules

I s ∈ Sπ(s) and

I succ(s ′, π(s ′)) ⊆ Sπ(s) for all s ′ ∈ Sπ(s) where π(s ′) 6= ⊥.

If π(s ′) 6= ⊥ for all s ′ ∈ Sπ(s), then π is executable in s.
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F1. Markov Decision Processes Summary

F1.4 Summary
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F1. Markov Decision Processes Summary

Summary

I Many planning scenarios beyond classical planning

I Part F and G are on probabilistic planning

I SSPs are classical planning + probabilistic transition function

I MDPs allow state-dependent rewards that are
discounted over an infinite horizon

I Solutions of SSPs and MDPs are policies

I Policies consider branching and cycles
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