Planning and Optimization
E9. Operator Counting

Malte Helmert and Thomas Keller

Universitat Basel

November 25, 2019

Content of this Course

% Foundations |

~| Logic |

—I Heuristics |

Explicit MDPs |

Probabilistic

Factored MDPs |

Content of this Course: Constraints

—{ Landmarks ‘

Cost
Partitioning
Post-hoc
Optimization
[Constraints 7| [Network
Flows
Operator
Counting
L Potential
Heuristics

Introduction

Introduction inting Framework

oeo

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen; Oblue }-
The flow constraint for some atom a is the constraint

1 + Count,,,,, = Count,,, if
m a is true in the initial state B Ogreen Produces a

m ais false in the goal B O.4 COnsumes a

In natural language, the flow constraint expresses that

Introduction 1ting Framework
o] Yo} s

Summary

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen; Oblue }-
The flow constraint for some atom a is the constraint

1 + Count,,,,, = Count,,, if
m a is true in the initial state B Ogreen Produces a

m ais false in the goal B O.4 COnsumes a

In natural language, the flow constraint expresses that

every plan uses 0,4 once more than ogeen.

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

2_1»0
0_1»_1’ 0_91
772 (EE)
1_0»0
111 2 1
+3 373 @I °
220 >
120
302 = 1‘1>0
-
310 2 2 1

Introduction c unting Framework >roper Summar

ooe

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

210
011 001
02 2 000
> -
5>
220
= 10
)
plans that use »
once more than »"
310 2 1

Introduction c counting Framework

ooe

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

011

“plans that use -
as often as »"

120

:
plans that use »

once more than »"

2 1

Operator-counting Framework

@00000000

Operator-counting Framework

Operator Counting

Operator-counting Framework
0@0000000

Operator counting

generalizes this idea to a framework that allows to
admissibly combine different heuristics.

uses linear constraints ...
. that describe number of occurrences of an operator ...
. and must be satisfied by every plan.

provides declarative way to describe
knowledge about solutions.

Summar

allows reasoning about solutions to derive heuristic estimates.

Introduction Operator-counting Framework

00@000000

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let I be a planning task with operators O and let s be a state.
Let V be the set of integer variables Count, for each o € O.

A linear inequality over V is called an operator-counting constraint
for s if for every plan 7 for s setting each Count, to the number of
occurrences of o in 7 is a feasible variable assignment.

v

Introduction Operator-counting Framework

000e00000

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP¢ for a set C of
operator-counting constraints for state s is

Minimize Z cost(o) - Count, subject to

C and Count, > 0 for all 0 € O,

where O is the set of operators.

The IP heuristic h? is the objective value of IP¢,
the LP heuristic h'EP is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is co.

Introduction Operator-counting Framework

0O000@0000

Operator-counting Constraints

m Adding more constraints can only remove feasible solutions
m Fewer feasible solutions can only increase objective value

m Higher objective value means better informed heuristic

= Have we already seen other operator-counting constraints?

Introduction Operator-counting Framework Prop
00000@000 d

Summar

Reminder: Minimum Hitting Set for Landmarks

Variables

Non-negative variable Applied, for each operator o

Objective
Minimize) cost(o) - Applied,

> Applied, > 1 for all landmarks L
o€l

Introduction Operator-counting Framework Pro
000 00000@000 d

Summar

Operator Counting with Disjunctive Action Landmarks

Variables

Non-negative variable Count, for each operator o

Objective
Minimize)~ cost(o) - Count,

ZCounto > 1 for all landmarks L
o€L

Operator-counting Framework
000000800

Reminder: Post-hoc Optimization Heuristic

For set of abstractions {a1,...,an}:

Variables

Non-negative variables X, for all operators 0 € O
X, is cost incurred by operator o

Objective
Minimize > .5 Xo

Xo > h%(s) fora€{ai,...,an}
Xo >0

Zoe O:0 affects T

foralloe O

Introduction Operator-counting Framework ’ro es Summar

0O00000e00

Operator Counting with Post-hoc Optimization Constraints

For set of abstractions {a1,...,a,}:

Variables

Non-negative variables Count, for all operators o € O
Count, - cost(0) is cost incurred by operator o

Objective

Minimize), cost(o) - Count,

cost(o) - Count, > h%(s) for a € {a1,...,an}

ZoEO:o affects T2

cost(o) - Count, >0 forall o € O

Introduction Operator-counting Framework roper Summar

000000080

Example

2_1>0
112 000
121
5
131
>
220
5

“plans that use -
once more than »"

Introduction Operator-counting Framework

000000080

Example

“plans that use »

at least once”
i

“plans that use -
once more than »"

Introduction Operator-counting Framework

000000080

Example

5>
“plans that use -
at least once”

“plans that use -+
once more than »"

Introduction Operator-counting Framework

000000080

Example

5>
“plans that use -
at least once”

“plans that use -
once more than »"

Operator-counting Framework 2 Summary
00000000e

Further Examples?

m The definition of operator-counting constraints can be
extended to groups of constraints and auxiliary variables.

m With this extended definition we could also cover
more heuristics, e.g., the perfect relaxation heuristic h™
(see exercises)

Properties
€00000

Properties

Introduction c inting Framework Properties
O 000000

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

Let C be a set of operator-counting constraints for state s and w
be an optimal plan for s. The number of operator occurrences of m
are a feasible solution for C. As the IP/LP minimizes the total
plan cost, the objective value cannot exceed the cost of 7 and is
therefore an admissible estimate. [

1ting Framework Properties

[e]e] le]ele]

Dominance

Theorem

Let C and C’' be sets of operator-counting constraints for s and let
CCC' Then|Pc <IP¢ and LPc < LP.

Proof.

Every feasible solution of C’ is also feasible for C. As the LP/IP is
a minimization problem, the objective value subject to C can
therefore not be larger than the one subject to C’. Ol

| A\

v

Adding more constraints can only improve the heuristic estimate.

Introduction c inting Framework Properties

[e]e]e] lele]

Heuristic Combination

Operator counting as heuristic combination
m Multiple operator-counting heuristics can be combined by
computing hkp/h'cp for the union of their constraints.

m This is an admissible combination.

m Never worse than maximum of individual heuristics
m Sometimes even better than their sum

m We already know a way of admissibly combining heuristics:
cost partitioning.
= How are they related?

Introduction

1ting Framework Properties
000000

Connection to Cost Partitioning

Theorem

Let C1,...,C, be sets of operator-counting constraints for s and
C =", C. Then h'C-P is the optimal general cost partitioning
over the heuristics h'&',_).

Proof Sketch.

In LP¢, add variables Count!, and constraints Count, = Count,
for all operators 0 and 1 < i < n. Then replace Count, by
Count’ in C,.

Dualizing the resulting LP shows that h'@P computes a cost
partitioning. Dualizing the component heuristics of that cost
partitioning shows that they are h'@f’.

| A\

Introduction c inting Framework Properties
5 00000e

Comparison to Optimal Cost Partitioning

m some heuristics are more compact
if expressed as operator counting

m some heuristics cannot be expressed as operator counting
m operator counting IP even better than
optimal cost partitioning
m Cost partitioning maximizes, so heuristics must be encoded
perfectly to guarantee admissibility.

Operator counting minimizes, so missing information just
makes the heuristic weaker.

[Je]

Summary

1ting Framework 2 Summary

oe

Summary

m Many heuristics can be formulated in terms of
operator-counting constraints.

m The operator counting heuristic framework allows to
combine the constraints and to reason on the entire
encoded declarative knowledge.

m The heuristic estimate for the combined constraints
can be better than the one of the best ingredient heuristic
but never worse.

m Operator counting is equivalent to optimal general cost
partitioning over individual constraints.

	Introduction
	

	Operator-counting Framework
	

	Properties
	

	Summary
	

