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Connection to Planning

Let us now rephrase the puzzle slightly

Example

the 6 kinds of sweets are 6 operators

and the 3 hints are about admissible heuristics h1, h2 and h3,
stating that:

only operators o1, o2, o3 and o4 are relevant for h1

and h1(s0) = 11
only operators o3, o4, o5 and o6 are relevant for h2

and h2(s0) = 11
only operators o1, o2 and o6 are relevant for h3

and h3(s0) = 8

What is the highest possible admissible heuristic estimate
for s0 with this information?
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LP Formalization of the Example

We can express the puzzle (rephrased or not) as an LP

Variables

Non-negative variable X1, . . . ,X6 for operator o1, . . . , o6

Minimize X1 + X2 + X3 + X4 + X5 + X6 subject to

X1 + X2 + X3 + X4

+ X5 + X6

≥ 11

X1 + X2 +

X3 + X4 + X5 + X6 ≥ 11

X1 + X2

+ X3 + X4 + X5

+ X6 ≥ 8

Xi ≥ 0 for i ∈ {1, . . . , 6}
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Post-hoc Optimization
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Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

can be computed for any kind of heuristic . . .

. . . as long as we are able to determine relevance of operators

if in doubt, it’s always safe to assume
an operator is relevant for a heuristic

but for PhO to work well, it’s important that the set of
relevant operators is as small as possible
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Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let T be a transition system, and let ` be one of its labels.

We say that ` affects T if T has a transition s
`−→ t with s 6= t.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects T α.

We can efficiently determine operator relevance for abstractions.
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Linear Program (1)

Construct linear program for set of
abstractions {α1, . . . , αn}:

variable Xo for each operator o ∈ O

intuitively, Xo is cost incurred by operator o

abstraction heuristics are admissible∑
o∈O

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

can tighten these constraints to∑
o∈O:o affects T α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}
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Linear Program (2)

For set of abstractions {α1, . . . , αn}:

Variables

Xo for each operator o ∈ O

Objective

Minimize
∑

o∈O Xo

Subject to∑
o∈O:o affects T α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O
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Simplifying the LP

Reduce size of LP by aggregating variables
which always occur together in constraints.

Happens if several operators are relevant
for exactly the same heuristics.

Partitioning O/∼ induced by this equivalence relation

One variable X[o] for each [o] ∈ O/∼
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Example

Example

only operators o1, o2, o3 and o4 are relevant for h1

and h1(s0) = 11

only operators o3, o4, o5 and o6 are relevant for h2

and h2(s0) = 11

only operators o1, o2 and o6 are relevant for h3

and h3(s0) = 8

Which operators affect the same heuristics?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}
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Example

Example

only operators o1, o2, o3 and o4 are relevant for h1

and h1(s0) = 11

only operators o3, o4, o5 and o6 are relevant for h2

and h2(s0) = 11

only operators o1, o2 and o6 are relevant for h3

and h3(s0) = 8

Which operators affect the same heuristics?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}
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Simplifying the LP: Example

LP before aggregation

Variables

Non-negative variable X1, . . . ,X6

for operator o1, . . . , o6

Minimize X1 + X2 + X3 + X4 + X5 + X6 subject to

X1 + X2 + X3 + X4

+ X5 + X6

≥ 11

X1 + X2 +

X3 + X4 + X5 + X6 ≥ 11

X1 + X2

+ X3 + X4 + X5

+ X6 ≥ 8

Xi ≥ 0 for i ∈ {1, . . . , 6}
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Simplifying the LP: Example

LP after aggregation

Variables

Non-negative variable X[1],X[3],X[5],X[6]

for equivalence classes [o1], [o3], [o5], [o6]

Minimize X[1] + X[3] + X[5] + X[6] subject to

X[1] + X[3]

+ X[5] + X[6]

≥ 11

X[1] +

X[3] + X[5] + X[6] ≥ 11

X[1] +

+ X[3] + X[5]

+ X[6] ≥ 8

Xi ≥ 0 for i ∈ {[1], [3], [5], [6]}
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PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic hPhO
{α1,...,αn} for abstractions

α1, . . . , αn is the objective value of the following linear program:

Minimize
∑

[o]∈O/∼

X[o] subject to

∑
[o]∈O/∼:o affects α

X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼,

where o ∼ o ′ iff o and o ′ affect the same
transition systems in T α1 , . . . , T αn .
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PhO Heuristic

hPhO: Pommerening, Röger & Helmert (2013)

1 Precompute all abstraction heuristics hα1 , . . . , hαn .

2 Create LP for initial state s0.
3 For each new state s:

Look up hα(s) for all α ∈ {α1, . . . , αn}.
Adjust LP by replacing bounds with the hα(s).
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and {α1, . . . , αn} be a set of abstractions.
We show that there is a feasible variable assignment with objective
value equal to the cost of an optimal plan.
Let π be an optimal plan for state s and let costπ(O ′) be the cost
incurred by operators from O ′ ⊆ O in π.

Setting each X[o] to costπ([o]) is a feasible variable assignment:
Constraints X[o] ≥ 0 are satisfied. . . .
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each α ∈ {α1, . . . , αn}, π is a solution in the abstract
transition system and the sum in the corresponding constraint
equals the cost of the state-changing abstract state transitions
(i.e.. not accounting for self-loops). As hα(s) corresponds to the
cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value h∗(s)
(cost of π), so the objective value of the LP is admissible.
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Comparison
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Combining Estimates from Abstraction Heuristics

We have seen two alternatives to combine
abstraction heuristics admissibly:

Canonical heuristic (for PDBs)

Optimal cost partitioning

How does PhO compare to these?
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Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern,
the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic hC for pattern collection C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For a given pattern collection, the canonical heuristic is the best
possible admissible heuristic not using cost partitioning.
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Reminder: Optimal Cost Partitioning for Abstractions

Optimal cost partitioning for abstractions. . .

. . . uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

. . . dominates the canonical heuristic, i.e.. for the same
pattern collection, it never gives lower estimates than hC .

. . . is very expensive to compute
(recomputing the abstractions in every state).
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PhO: Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

X[o] for all equivalence classes [o] ∈ O/∼

Objective

Minimize
∑

[o]∈O/∼ X[o]

Subject to

[Yα]
∑

[o]∈O/∼:o affects T α
X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor Yi .
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PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to

[X[o]]
∑

α∈{α1,...,αn}:o affects T α
Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.
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PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to

[X[o]]
∑

α∈{α1,...,αn}:o affects T α
Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.
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Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider the assignment 〈Y α1 , . . . ,Y αn〉 of the dual of the LP
solved by the post-hoc optimization heuristic in state s. Its solution
value is equivalent to the solution value of the cost partitioned
heuristic induced by the cost partitioning 〈Y α1cost, . . . ,Y αncost〉.
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Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.
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Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.
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hPhO vs hC

For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

The post-hoc optimization heuristic solves an LP in each state
but does not require a preprocessing step

With post-hoc optimization, a large number of small patterns
works well.
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Summary
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Summary

Post-hoc optimization heuristic constraints express
admissibility of heuristics

exploits (ir-)relevance of operators for heuristics

explores the middle ground between canonical heuristic and
optimal cost partitioning.

For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

The computation can be done in polynomial time.


	Introduction
	Post-hoc Optimization
	Comparison
	Summary

