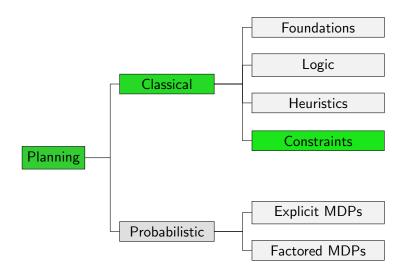
Planning and Optimization E7. Post-hoc Optimization

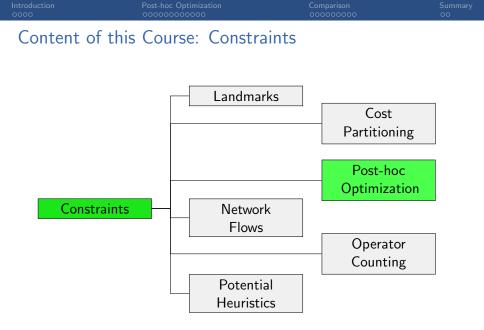
Malte Helmert and Thomas Keller

Universität Basel

November 20, 2019

Content of this Course





Introduction	
0000	

Post-hoc Optimization

Comparison

Summary 00

Introduction

Introduction	Post-hoc Optimization	
0000		

$\rightsquigarrow \mathsf{Blackboard}$

Connection to Planning

Let us now rephrase the puzzle slightly

Example

- the 6 kinds of sweets are 6 operators
- and the 3 hints are about admissible heuristics h_1 , h_2 and h_3 , stating that:
 - only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
 - only operators o₃, o₄, o₅ and o₆ are relevant for h₂ and h₂(s₀) = 11
 - only operators o₁, o₂ and o₆ are relevant for h₃ and h₃(s₀) = 8

What is the highest possible admissible heuristic estimate for s_0 with this information?

LP Formalization of the Example

We can express the puzzle (rephrased or not) as an LP

Variables

Non-negative variable X_1, \ldots, X_6 for operator o_1, \ldots, o_6

Minimize $X_1 + X_2 + X_3 + X_4 + X_5 + X_6$ subject to $X_1 + X_2 + X_3 + X_4 \ge 11$ $X_3 + X_4 + X_5 + X_6 \ge 11$ $X_1 + X_2 \qquad + X_6 \ge 8$ $X_i \ge 0$ for $i \in \{1, ..., 6\}$ Introduction 0000 Post-hoc Optimization

Comparison

Summary 00

Post-hoc Optimization

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning is the Post-hoc Optimization Heuristic (PhO)

- can be computed for any kind of heuristic ...
- ... as long as we are able to determine relevance of operators
- if in doubt, it's always safe to assume an operator is relevant for a heuristic
- but for PhO to work well, it's important that the set of relevant operators is as small as possible

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let \mathcal{T} be a transition system, and let ℓ be one of its labels. We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \stackrel{\ell}{\to} t$ with $s \neq t$.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects \mathcal{T}^{α} .

We can efficiently determine operator relevance for abstractions.

	Post-hoc Optimization 000●00000000	
_		

Linear Program (1)

Construct linear program for set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

- variable X_o for each operator $o \in O$
- intuitively, X_o is cost incurred by operator o
- abstraction heuristics are admissible

$$\sum_{o \in O} X_o \ge h^{lpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

can tighten these constraints to

$$\sum_{o \in \mathcal{O}: o \text{ affects } \mathcal{T}^{lpha}} X_o \geq h^{lpha}(s) \quad ext{ for } lpha \in \{lpha_1, \dots, lpha_n\}$$

	Post-hoc Optimization	
 5	$\langle \mathbf{a} \rangle$	

Linear Program (2)

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Objective

Minimize $\sum_{o \in O} X_o$

Subject to

$$\sum_{o \in O:o \text{ affects } \mathcal{T}^{\alpha}} X_o \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \ge 0 \qquad \text{for all } o \in O$$

Simplifying the LP

- Reduce size of LP by aggregating variables which always occur together in constraints.
- Happens if several operators are relevant for exactly the same heuristics.
- Partitioning $O\!/\!\sim$ induced by this equivalence relation
- One variable $X_{[o]}$ for each $[o] \in O/\!\!\sim$

Post-hoc Optimization	
0000000000	

Example

Example

- only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
- only operators o_3, o_4, o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
- only operators o₁, o₂ and o₆ are relevant for h₃ and h₃(s₀) = 8

Which operators affect the same heuristics?

Post-hoc Optimization	
0000000000	

Example

Example

- only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
- only operators o_3, o_4, o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
- only operators o₁, o₂ and o₆ are relevant for h₃ and h₃(s₀) = 8

Which operators affect the same heuristics?

Answer:
$$o_1 \sim o_2$$
 and $o_3 \sim o_4$
 $\Rightarrow O/\!\!\sim = \{[o_1], [o_3], [o_5], [o_6]\}$

Simplifying the LP: Example

LP before aggregation

Variables

Non-negative variable X_1, \ldots, X_6 for operator o_1, \ldots, o_6

Simplifying the LP: Example

LP after aggregation

Variables

Non-negative variable $X_{[1]}, X_{[3]}, X_{[5]}, X_{[6]}$ for equivalence classes $[o_1], [o_3], [o_5], [o_6]$

$$\begin{array}{lll} \text{Minimize} & X_{[1]} + X_{[3]} + X_{[5]} + X_{[6]} & \text{subject to} \\ \\ & X_{[1]} + X_{[3]} & \geq 11 \\ & X_{[3]} + X_{[5]} + X_{[6]} \geq 11 \\ \\ & X_{[1]} + & + X_{[6]} \geq 8 \\ & X_i \geq 0 & \text{for } i \in \{[1], [3], [5], [6]\} \end{array}$$

PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic $h_{\{\alpha_1,\ldots,\alpha_n\}}^{\text{PhO}}$ for abstractions α_1,\ldots,α_n is the objective value of the following linear program:

Minimize
$$\sum_{[o] \in O/\sim} X_{[o]}$$
 subject to

$$\begin{split} \sum_{[o] \in O/\!\!\sim:o \text{ affects } \alpha} X_{[o]} \geq h^{\alpha}(s) & \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\} \\ X_{[o]} \geq 0 & \text{for all } [o] \in O/\!\!\sim, \end{split}$$

where $o \sim o'$ iff o and o' affect the same transition systems in $\mathcal{T}^{\alpha_1}, \ldots, \mathcal{T}^{\alpha_n}$.

PhO Heuristic

h^{PhO} : Pommerening, Röger & Helmert (2013)

- Precompute all abstraction heuristics $h^{\alpha_1}, \ldots, h^{\alpha_n}$.
- **2** Create LP for initial state s_0 .
- I For each new state s:
 - Look up $h^{\alpha}(s)$ for all $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$.
 - Adjust LP by replacing bounds with the $h^{\alpha}(s)$.

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and $\{\alpha_1, \ldots, \alpha_n\}$ be a set of abstractions. We show that there is a feasible variable assignment with objective value equal to the cost of an optimal plan.

Let π be an optimal plan for state s and let $cost_{\pi}(O')$ be the cost incurred by operators from $O' \subseteq O$ in π .

Setting each $X_{[o]}$ to $cost_{\pi}([o])$ is a feasible variable assignment: Constraints $X_{[o]} \ge 0$ are satisfied. ...

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$, π is a solution in the abstract transition system and the sum in the corresponding constraint equals the cost of the state-changing abstract state transitions (i.e.. not accounting for self-loops). As $h^{\alpha}(s)$ corresponds to the cost of an optimal solution in the abstraction, the inequality holds. For this assignment, the objective function has value $h^*(s)$ (cost of π), so the objective value of the LP is admissible.

Post-hoc Optimization	Comparison	
	0000000	

Combining Estimates from Abstraction Heuristics

We have seen two alternatives to combine abstraction heuristics admissibly:

- Canonical heuristic (for PDBs)
- Optimal cost partitioning

How does PhO compare to these?

Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern, the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let $\ensuremath{\mathcal{C}}$ be a pattern collection for an FDR planning task.

The canonical heuristic $h^{\mathcal{C}}$ for pattern collection \mathcal{C} is defined as

$$h^{\mathcal{C}}(s) = \max_{\mathcal{D} \in \textit{cliques}(\mathcal{C})} \sum_{P \in \mathcal{D}} h^{P}(s),$$

where $cliques(\mathcal{C})$ is the set of all maximal cliques in the compatibility graph for \mathcal{C} .

For a given pattern collection, the canonical heuristic is the best possible admissible heuristic not using cost partitioning.

Reminder: Optimal Cost Partitioning for Abstractions

Optimal cost partitioning for abstractions...

- uses a state-specific LP to find the best possible cost partitioning, and sums up the heuristic estimates.
- ... dominates the canonical heuristic, i.e.. for the same pattern collection, it never gives lower estimates than h^{C} .
- ... is very expensive to compute (recomputing the abstractions in every state).

PhO: Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 $X_{[o]}$ for all equivalence classes $[o] \in O/\!\!\!\sim$

Objective

Minimize $\sum_{[o] \in O/\sim} X_{[o]}$

Subject to

$$\begin{bmatrix} Y_{\alpha} \end{bmatrix} \quad \sum_{[o] \in O/\sim:o \text{ affects } \mathcal{T}^{\alpha}} X_{[o]} \ge h^{\alpha}(s) \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\} \\ X_{[o]} \ge 0 \qquad \text{for all } [o] \in O/\!\!\sim$$

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$

Objective

Maximize
$$\sum_{\alpha \in \{\alpha_1,...,\alpha_n\}} h^{\alpha}(s) Y_{\alpha}$$

Subject to

$$\begin{bmatrix} X_{[o]} \end{bmatrix} \quad \sum_{\alpha \in \{\alpha_1, \dots, \alpha_n\}: o \text{ affects } \mathcal{T}^{\alpha}} \begin{array}{l} Y_{\alpha} \leq 1 \quad \text{for all } [o] \in \mathcal{O} /\!\! \sim \\ \\ Y_{\alpha} \geq 0 \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\} \end{array}$$

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$

Objective

Maximize
$$\sum_{\alpha \in \{\alpha_1,...,\alpha_n\}} h^{\alpha}(s) Y_{\alpha}$$

Subject to

$$\begin{split} [X_{[o]}] \quad \sum_{\alpha \in \{\alpha_1, \dots, \alpha_n\}: o \text{ affects } \mathcal{T}^{\alpha}} \begin{array}{l} Y_{\alpha} \leq 1 & \text{ for all } [o] \in \mathcal{O} /\!\!\!\sim \\ & Y_{\alpha} \geq 0 & \text{ for all } \alpha \in \{\alpha_1, \dots, \alpha_n\} \end{array} \end{split}$$

We compute a state-specific cost partitioning that can only scale the operator costs within each heuristic by a factor $0 \le Y_{\alpha} \le 1$.

Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider the assignment $\langle Y_{\alpha_1}, \ldots, Y_{\alpha_n} \rangle$ of the dual of the LP solved by the post-hoc optimization heuristic in state *s*. Its solution value is equivalent to the solution value of the cost partitioned heuristic induced by the cost partitioning $\langle Y_{\alpha_1} cost, \ldots, Y_{\alpha_n} cost \rangle$.

Post-hoc Optimization

Comparison

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{C}(s)$.

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{C}(s)$.

Corollary

The post-hoc optimization heuristic dominates the canonical heuristic for the same set of abstractions.

Post-hoc Optimization	Comparison	
	00000000	

$h^{\rm PhO}$ vs $h^{\rm C}$

- For the canonical heuristic, we need to find all maximal cliques, which is an NP-hard problem.
- The post-hoc optimization heuristic dominates the canonical heuristic and can be computed in polynomial time.
- The post-hoc optimization heuristic solves an LP in each state but does not require a preprocessing step
- With post-hoc optimization, a large number of small patterns works well.

Post-hoc Optimization	Summar
	00

Summary

	Post-hoc Optimization		Summary
0000	0000000000	00000000	00

Summary

- Post-hoc optimization heuristic constraints express admissibility of heuristics
- exploits (ir-)relevance of operators for heuristics
- explores the middle ground between canonical heuristic and optimal cost partitioning.
- For the same set of abstractions, the post-hoc optimization heuristic dominates the canonical heuristic.
- The computation can be done in polynomial time.