Planning and Optimization E7. Post-hoc Optimization

Malte Helmert and Thomas Keller

Universität Basel

November 20, 2019

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

Planning and Optimization

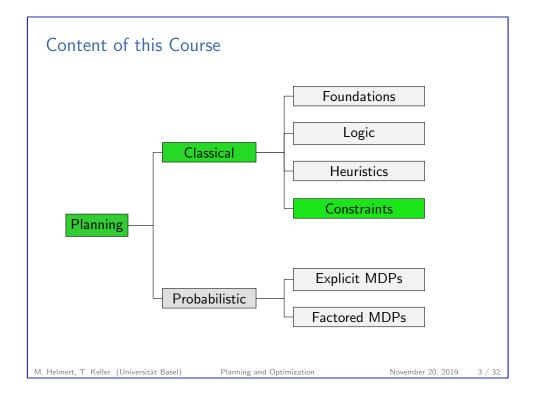
November 20, 2019 — E7. Post-hoc Optimization

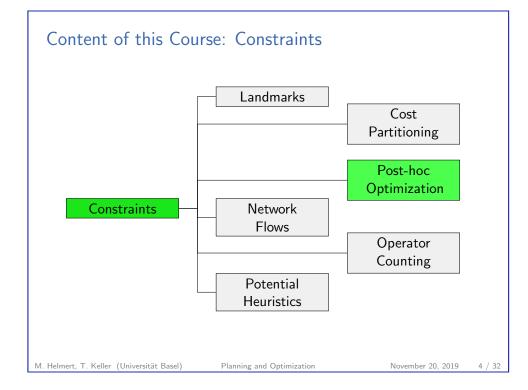
- E7.1 Introduction
- E7.2 Post-hoc Optimization
- E7.3 Comparison
- E7.4 Summary

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019 2 / 32





E7. Post-hoc Optimization Introduction

E7.1 Introduction

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019 5 / 32

E7. Post-hoc Optimization

Puzzle

→ Blackboard

M. Helmert, T. Keller (Universität Basel)

E7. Post-hoc Optimization

Planning and Optimization

November 20, 2019

Introduction

E7. Post-hoc Optimization

Connection to Planning

Let us now rephrase the puzzle slightly

Example

- ▶ the 6 kinds of sweets are 6 operators
- ▶ and the 3 hints are about admissible heuristics h_1 , h_2 and h_3 , stating that:
 - ▶ only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
 - only operators o_3 , o_4 , o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
 - ightharpoonup only operators o_1 , o_2 and o_6 are relevant for h_3 and $h_3(s_0) = 8$

What is the highest possible admissible heuristic estimate for s_0 with this information?

LP Formalization of the Example

We can express the puzzle (rephrased or not) as an LP

Variables

Non-negative variable X_1, \ldots, X_6 for operator o_1, \ldots, o_6

Minimize $X_1 + X_2 + X_3 + X_4 + X_5 + X_6$ subject to

$$X_1 + X_2 + X_3 + X_4 \ge 11$$

 $X_3 + X_4 + X_5 + X_6 \ge 11$

$$X_1 + X_2 + X_6 \ge 8$$
$$X_i \ge 0 \quad \text{for } i \in \{1, \dots, 6\}$$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

Post-hoc Optimization

Post-hoc Optimization

E7. Post-hoc Optimization

The heuristic that generalizes this kind of reasoning is the Post-hoc Optimization Heuristic (PhO)

- can be computed for any kind of heuristic . . .
- ▶ ... as long as we are able to determine relevance of operators
- ▶ if in doubt, it's always safe to assume an operator is relevant for a heuristic
- ▶ but for PhO to work well, it's important that the set of relevant operators is as small as possible

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019 9 /

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

E7. Post-hoc Optimization

Post-hoc Optimization

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

E7.2 Post-hoc Optimization

Let $\mathcal T$ be a transition system, and let ℓ be one of its labels.

We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects \mathcal{T}^{α} .

We can efficiently determine operator relevance for abstractions.

E7. Post-hoc Optimization

Post-hoc Optimization

Post-hoc Optimization

Linear Program (1)

Construct linear program for set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

- ▶ variable X_o for each operator $o \in O$
- ▶ intuitively, X₀ is cost incurred by operator o
- abstraction heuristics are admissible.

$$\sum_{o \in O} X_o \ge h^{\alpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

► can tighten these constraints to

$$\sum_{o \in O: o \text{ affects } \mathcal{T}^{\alpha}} X_o \ge h^{\alpha}(s) \quad \text{ for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

11 / 32

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

12 / 20

Post-hoc Optimization

Linear Program (2)

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 X_o for each operator $o \in O$

Objective

Minimize $\sum_{o \in O} X_o$

Subject to

$$\sum_{o \in O: o \text{ affects } \mathcal{T}^{\alpha}} X_o \ge h^{\alpha}(s) \quad \text{for } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_o \ge 0 \qquad \text{for all } o \in O$$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

November 20, 2019

Post-hoc Optimization

E7. Post-hoc Optimization

Post-hoc Optimization

Example

Example

- \blacktriangleright only operators o_1, o_2, o_3 and o_4 are relevant for h_1 and $h_1(s_0) = 11$
- \blacktriangleright only operators o_3, o_4, o_5 and o_6 are relevant for h_2 and $h_2(s_0) = 11$
- \triangleright only operators o_1, o_2 and o_6 are relevant for h_3 and $h_3(s_0) = 8$

Which operators affect the same heuristics?

Answer: $o_1 \sim o_2$ and $o_3 \sim o_4$ $\Rightarrow O/\sim = \{[o_1], [o_3], [o_5], [o_6]\}$ E7. Post-hoc Optimization

Planning and Optimization

November 20, 2019

Simplifying the LP

- ► Reduce size of LP by aggregating variables which always occur together in constraints.
- ► Happens if several operators are relevant for exactly the same heuristics.
- ightharpoonup Partitioning O/\sim induced by this equivalence relation
- ▶ One variable $X_{[o]}$ for each $[o] \in O/\sim$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

E7. Post-hoc Optimization

Post-hoc Optimization

Simplifying the LP: Example

LP before aggregation

Variables

M. Helmert, T. Keller (Universität Basel)

Non-negative variable X_1, \ldots, X_6 for operator o_1, \ldots, o_6

> Minimize $X_1 + X_2 + X_3 + X_4 + X_5 + X_6$ subject to

$$X_1 + X_2 + X_3 + X_4 \ge 11$$

 $X_3 + X_4 + X_5 + X_6 \ge 11$
 $X_1 + X_2 + X_6 \ge 8$

 $X_i > 0$ for $i \in \{1, ..., 6\}$

Post-hoc Optimization

Simplifying the LP: Example

LP after aggregation

Variables

Non-negative variable $X_{[1]}, X_{[3]}, X_{[5]}, X_{[6]}$ for equivalence classes $[o_1]$, $[o_3]$, $[o_5]$, $[o_6]$

Minimize
$$X_{[1]} + X_{[3]} + X_{[5]} + X_{[6]}$$
 subject to

$$X_{[1]} + X_{[3]} \ge 11$$
 $X_{[3]} + X_{[5]} + X_{[6]} \ge 11$
 $X_{[1]} + X_{[6]} \ge 8$
 $X_{i} \ge 0 \text{ for } i \in \{[1], [3], [5], [6]\}$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

E7. Post-hoc Optimization

Post-hoc Optimization

PhO Heuristic

h^{PhO}: Pommerening, Röger & Helmert (2013)

- Precompute all abstraction heuristics $h^{\alpha_1}, \ldots, h^{\alpha_n}$.
- 2 Create LP for initial state s_0 .
- For each new state s:
 - ▶ Look up $h^{\alpha}(s)$ for all $\alpha \in \{\alpha_1, \dots, \alpha_n\}$.
 - Adjust LP by replacing bounds with the $h^{\alpha}(s)$.

E7. Post-hoc Optimization

Post-hoc Optimization

PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic $h^{\text{PhO}}_{\{\alpha_1,\ldots,\alpha_n\}}$ for abstractions α_1,\ldots,α_n is the objective value of the following linear program:

Minimize
$$\sum_{[o] \in O/\sim} X_{[o]}$$
 subject to

$$\sum_{[o] \in \textit{O}/\!\!\sim : o \text{ affects } \alpha} X_{[o]} \ge h^{\alpha}(s) \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$
$$X_{[o]} \ge 0 \qquad \text{for all } [o] \in \textit{O}/\!\!\sim,$$

where $o \sim o'$ iff o and o' affect the same transition systems in $\mathcal{T}^{\alpha_1}, \ldots, \mathcal{T}^{\alpha_n}$.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

E7. Post-hoc Optimization

Post-hoc Optimization

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and $\{\alpha_1, \dots, \alpha_n\}$ be a set of abstractions. We show that there is a feasible variable assignment with objective value equal to the cost of an optimal plan.

Let π be an optimal plan for state s and let $cost_{\pi}(O')$ be the cost incurred by operators from $O' \subseteq O$ in π .

Setting each $X_{[o]}$ to $cost_{\pi}([o])$ is a feasible variable assignment: Constraints $X_{[o]} \ge 0$ are satisfied.

Post-hoc Optimization

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each $\alpha \in \{\alpha_1, \ldots, \alpha_n\}$, π is a solution in the abstract transition system and the sum in the corresponding constraint equals the cost of the state-changing abstract state transitions (i.e., not accounting for self-loops). As $h^{\alpha}(s)$ corresponds to the cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value $h^*(s)$ (cost of π), so the objective value of the LP is admissible.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

21 / 32

E7. Post-hoc Optimization Comparison

E7.3 Comparison

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

22 / 32

E7. Post-hoc Optimization

Comparison

Combining Estimates from Abstraction Heuristics

We have seen two alternatives to combine abstraction heuristics admissibly:

- ► Canonical heuristic (for PDBs)
- ► Optimal cost partitioning

How does PhO compare to these?

E7. Post-hoc Optimization

Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern, the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let $\mathcal C$ be a pattern collection for an FDR planning task.

The canonical heuristic $h^{\mathcal{C}}$ for pattern collection \mathcal{C} is defined as

$$h^{\mathcal{C}}(s) = \max_{\mathcal{D} \in cliques(\mathcal{C})} \sum_{P \in \mathcal{D}} h^{P}(s),$$

where cliques(C) is the set of all maximal cliques in the compatibility graph for C.

For a given pattern collection, the canonical heuristic is the best possible admissible heuristic not using cost partitioning.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimizatio

November 20, 2019

Reminder: Optimal Cost Partitioning for Abstractions

Optimal cost partitioning for abstractions. . .

- ▶ ... uses a state-specific LP to find the best possible cost partitioning, and sums up the heuristic estimates.
- ...dominates the canonical heuristic, i.e., for the same
- (recomputing the abstractions in every state).

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

E7. Post-hoc Optimization

November 20, 2019

Comparisor

pattern collection, it never gives lower estimates than $h^{\mathcal{C}}$.

▶ ...is very expensive to compute

PhO: Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 $X_{[o]}$ for all equivalence classes $[o] \in O/\sim$

Objective

Minimize $\sum_{[o] \in O/\sim} X_{[o]}$

Subject to

$$[Y_{\alpha}] \quad \sum_{[o] \in O / \sim : o \text{ affects } \mathcal{T}^{\alpha}} X_{[o]} \ge h^{\alpha}(s) \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\}$$

$$X_{[o]} \ge 0 \qquad \text{for all } [o] \in O / \sim$$

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

E7. Post-hoc Optimization

PhO: Dual Linear Program

For set of abstractions $\{\alpha_1, \ldots, \alpha_n\}$:

Variables

 Y_{α} for each abstraction $\alpha \in \{\alpha_1, \dots, \alpha_n\}$

Objective

Maximize $\sum_{\alpha \in \{\alpha_1, ..., \alpha_n\}} h^{\alpha}(s) Y_{\alpha}$

Subject to

$$\begin{split} [X_{[o]}] \quad \sum\nolimits_{\alpha \in \{\alpha_1, \dots, \alpha_n\} : o \text{ affects } \mathcal{T}^{\alpha}} Y_{\alpha} \leq 1 \quad \text{for all } [o] \in \textit{O} / \sim \\ Y_{\alpha} \geq 0 \quad \text{for all } \alpha \in \{\alpha_1, \dots, \alpha_n\} \end{split}$$

We compute a state-specific cost partitioning that can only scale the operator costs within each heuristic by a factor $0 \le Y_{\alpha} \le 1$.

E7. Post-hoc Optimization

Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider the assignment $\langle Y_{\alpha_1}, \dots, Y_{\alpha_n} \rangle$ of the dual of the LP solved by the post-hoc optimization heuristic in state s. Its solution value is equivalent to the solution value of the cost partitioned heuristic induced by the cost partitioning $\langle Y_{\alpha_1} cost, \dots, Y_{\alpha_n} cost \rangle$.

Comparison

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization heuristic in state s for a given set of abstractions. If we restrict the variables in D to integers, the objective value is the canonical heuristic value $h^{\mathcal{C}}(s)$.

Corollary

The post-hoc optimization heuristic dominates the canonical heuristic for the same set of abstractions.

M. Helmert, T. Keller (Universität Basel)

E7. Post-hoc Optimization

Planning and Optimization

November 20, 2019

November 20, 2019

29 / 32

Summary

E7.4 Summary

E7. Post-hoc Optimization

Comparison

 h^{PhO} vs $h^{\mathcal{C}}$

- ► For the canonical heuristic, we need to find all maximal cliques, which is an NP-hard problem.
- ► The post-hoc optimization heuristic dominates the canonical heuristic and can be computed in polynomial time.
- ► The post-hoc optimization heuristic solves an LP in each state but does not require a preprocessing step
- ► With post-hoc optimization, a large number of small patterns works well.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

30 / 32

E7. Post-hoc Optimization

Summary

Summary

- ► Post-hoc optimization heuristic constraints express admissibility of heuristics
- exploits (ir-)relevance of operators for heuristics
- explores the middle ground between canonical heuristic and optimal cost partitioning.
- ► For the same set of abstractions, the post-hoc optimization heuristic dominates the canonical heuristic.
- ► The computation can be done in polynomial time.

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 20, 2019

22 / 2