Planning and Optimization E6. Optimal Cost-Partitioning

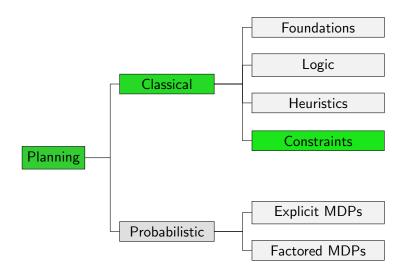
Malte Helmert and Thomas Keller

Universität Basel

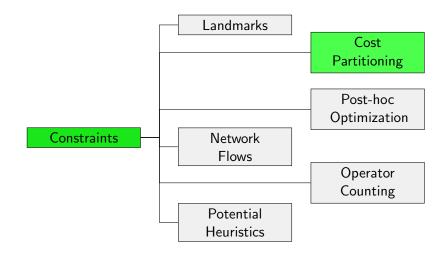
November 18, 2019

General Cost Partitioning

Content of this Course



Content of this Course: Constraints



Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

- Use variables for cost of each operator in each task copy
- Express heuristic values with linear constraints
- Maximize sum of heuristic values subject to these constraints

LPs known for

- abstraction heuristics
- disjunctive action landmarks

General Cost Partitioning

Summary 00

Abstractions

General Cost Partitioning

Summary 00

LP for Shortest Path in State Space

Variables

Non-negative variable Distance_s for each state s

Objective

Maximize Distances,

Subject to

 $\mathsf{Distance}_{s_{\star}} = 0 \qquad \qquad \text{for all goal states } s_{\star}$

 $\text{Distance}_{s} \leq \text{Distance}_{s'} + cost(o)$ for all transitions $s \xrightarrow{o} s'$

Optimal Cost Partitioning for Abstractions I

Variables

For each abstraction α :

Non-negative variable $\text{Distance}_{s}^{\alpha}$ for each abstract state s, Non-negative variable Cost_{o}^{α} for each operator o

Objective

. . .

Maximize $\sum_{\alpha} \text{Distance}_{\alpha(s_l)}^{\alpha}$

Optimal Cost Partitioning for Abstractions II

Subject to

$$\sum\nolimits_{\alpha} \mathsf{Cost}_{o}^{\alpha} \leq \mathit{cost}(o)$$

for all operators o

and for all abstractions $\boldsymbol{\alpha}$

 $\begin{array}{ll} \mathsf{Distance}_{s_\star}^{\alpha} = 0 & \text{for all abstract goal states } s_\star\\ \mathsf{Distance}_s^{\alpha} \leq \mathsf{Distance}_{s'}^{\alpha} + \mathsf{Cost}_o^{\alpha} \text{ for all transition } s \xrightarrow{o} s' \end{array}$

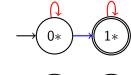
Abstractions

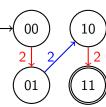
Landmarks

General Cost Partitioning

Summary 00

Example (1)





General Cost Partitioning

Summary 00

Example (2)

Maximize $Distance_0^1 + Distance_0^2$ subject to $Cost_{rod}^1 + Cost_{rod}^2 < 2$ $Cost_{blue}^1 + Cost_{blue}^2 < 2$ $Distance_1^1 = 0$ $Distance_0^1 \leq Distance_0^1 + Cost_{red}^1$ $Distance_0^1 < Distance_1^1 + Cost_{blue}^1$ $Distance_{1}^{1} \leq Distance_{1}^{1} + Cost_{rad}^{1}$ $Distance_1^2 = 0$ $Distance_0^2 < Distance_1^2 + Cost_{red}^2$ $Distance_1^2 < Distance_0^2 + Cost_{blue}^2$ $\mathsf{Distance}^{\alpha}_{s} \geq 0 \quad \text{for } \alpha \in \{1, 2\}, s \in \{0, 1\}$ $Cost_{\alpha}^{\alpha} \geq 0$ for $\alpha \in \{1, 2\}, o \in \{red, blue\}$

Caution

A word of warning

- optimization for every state gives best-possible cost partitioning
- but takes time

Better heuristic guidance often does not outweigh the overhead.

Optimal Cost Partitioning for Landmarks

- Use again LP that covers heuristic computation and cost partitioning.
- LP variable Cost_L for cost of landmark L in induced task
- Explicit variables for cost partitioning not necessary. Use implicitly cost_L(o) = Cost_L for all o ∈ L and 0 otherwise.

Optimal Cost Partitioning for Landmarks: LP

Variables

Non-negative variable $Cost_L$ for each disj. action landmark $L \in \mathcal{L}$

Objective

Maximize $\sum_{L \in \mathcal{L}} \mathsf{Cost}_L$

Subject to

$$\sum_{L \in \mathcal{L}: o \in L} \mathsf{Cost}_L \leq \mathit{cost}(o) \quad \text{ for all operators } o$$

General Cost Partitioning

Example

Example (1)

Let Π be a planning task with operators o_1, \ldots, o_4 and $cost(o_1) = 3$, $cost(o_2) = 4$, $cost(o_3) = 5$ and $cost(o_4) = 0$. Let the following be disjunctive action landmarks for Π :

$$\begin{aligned} \mathcal{L}_1 &= \{o_4\} \\ \mathcal{L}_2 &= \{o_1, o_2\} \\ \mathcal{L}_3 &= \{o_1, o_3\} \\ \mathcal{L}_4 &= \{o_2, o_3\} \end{aligned}$$

General Cost Partitioning

Example

Example (2)

Maximize $Cost_{\mathcal{L}_1} + Cost_{\mathcal{L}_2} + Cost_{\mathcal{L}_3} + Cost_{\mathcal{L}_4}$ subject to

$Cost_{\mathcal{L}_2} + Cost_{\mathcal{L}_3} \leq 3$	
$Cost_{\mathcal{L}_2} + Cost_{\mathcal{L}_4} \leq 4$	
$Cost_{\mathcal{L}_3} + Cost_{\mathcal{L}_4} \leq 5$	
$Cost_{\mathcal{L}_1} \leq 0$	
$Cost_{\mathcal{L}_i} \geq 0$	for $i \in \{1,2,3,4\}$
	$\begin{aligned} & \operatorname{Cost}_{\mathcal{L}_2} + \operatorname{Cost}_{\mathcal{L}_4} \leq 4 \\ & \operatorname{Cost}_{\mathcal{L}_3} + \operatorname{Cost}_{\mathcal{L}_4} \leq 5 \\ & \operatorname{Cost}_{\mathcal{L}_1} \leq 0 \end{aligned}$

Optimal Cost Partitioning for Landmarks (Dual view)

Variables

Non-negative variable Applied_o for each operator o

Objective

Minimize $\sum_{o} \text{Applied}_{o} \cdot cost(o)$

Subject to

$$\sum_{o \in L} \mathsf{Applied}_o \geq 1 \text{ for all landmarks } L$$

Minimize "plan cost" with all landmarks satisfied.

Abstractions

General Cost Partitioning

Example: Dual View

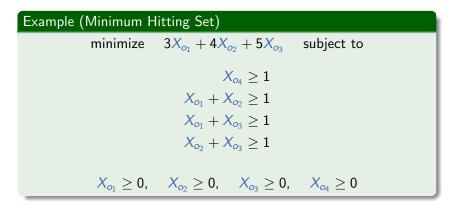
Example (Optimal Cost Partitioning: Dual View)		
Minimize	$3Applied_{o_1} + 4Applied_{o_2} + 5Applied_{o_3}$ subject to	
	$Applied_{o_4} \geq 1$	
Ap	$oplied_{o_1} + Applied_{o_2} \ge 1$	
Ap	$oplied_{o_1} + Applied_{o_3} \ge 1$	
Ap	$oplied_{o_2} + Applied_{o_3} \ge 1$	
	$Applied_{o_i} \geq 0 for \ i \in \{1, 2, 3, 4\}$	

Example: Dual View

Example (Optimal Cost Partitioning: Dual View)		
Minimize	$3Applied_{o_1} + 4Applied_{o_2} + 5Applied_{o_3}$ subject to	
	$Applied_{o_4} \geq 1$	
Ap	$oplied_{o_1} + Applied_{o_2} \ge 1$	
Ap	$oplied_{o_1} + Applied_{o_3} \ge 1$	
Ap	$pplied_{o_2} + Applied_{o_3} \ge 1$	
	$Applied_{o_i} \geq 0 \text{for } i \in \{1, 2, 3, 4\}$	

This is equal to the LP relaxation of MHS heuristic

Reminder: LP Relaxation of MHS heuristic



→ optimal solution of LP relaxation:

 $X_{o_4} = 1$ and $X_{o_1} = X_{o_2} = X_{o_3} = 0.5$ with objective value 6

~> LP relaxation of MHS heuristic is admissible and can be computed polynomial time

General Cost Partitioning •0000000

Summary 00

General Cost Partitioning

General Cost Partitioning

Cost functions usually non-negative

- We tacitly also required this for task copies
- Makes intuitively sense: original costs are non-negative
- But: not necessary for cost-partitioning!

General Cost Partitioning

General Cost Partitioning

Definition (General Cost Partitioning)

Let Π be a planning task with operators O.

A general cost partitioning for Π is a tuple $\langle cost_1, \ldots, cost_n \rangle$, where

•
$$cost_i: O \rightarrow \mathbb{R}$$
 for $1 \leq i \leq n$ and

•
$$\sum_{i=1}^{n} cost_i(o) \le cost(o)$$
 for all $o \in O$.

General Cost Partitioning: Admissibility

Theorem (Sum of Solution Costs is Admissible)

Let Π be a planning task, $\langle cost_1, \ldots, cost_n \rangle$ be a general cost partitioning and $\langle \Pi_1, \ldots, \Pi_n \rangle$ be the tuple of induced tasks.

Then the sum of the solution costs of the induced tasks is an admissible heuristic for Π , i.e., $\sum_{i=1}^{n} h_{\Pi_i}^* \leq h_{\Pi}^*$.

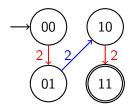
(Proof omitted.)

Abstractions

Landmarks 00000000 General Cost Partitioning

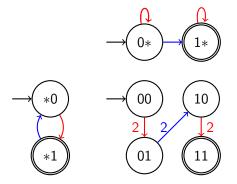
Summary 00

General Cost Partitioning: Example

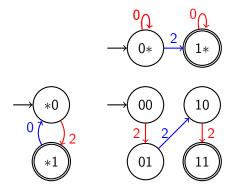


Summary 00

General Cost Partitioning: Example

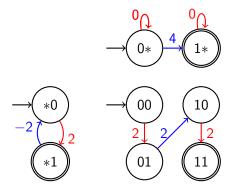


General Cost Partitioning: Example



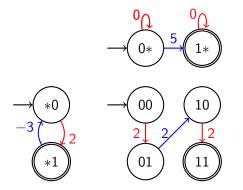
Heuristic value: 2 + 2 = 4

General Cost Partitioning: Example



Heuristic value: 4 + 2 = 6

General Cost Partitioning: Example



Heuristic value: $-\infty+5=-\infty$

	General Cost Partitioning	

LP for Shortest Path in State Space with Negative Costs

Variables

General variable Distances for each state s

Objective

Maximize Distances,

Subject to

 $\begin{array}{ll} \text{Distance}_{s_{\star}} \leq 0 & \text{for all goal states } s_{\star} \\ \text{Distance}_{s} \leq \text{Distance}_{s'} + cost(o) \text{ for all alive transitions } s \xrightarrow{o} s' \end{array}$

alive: on any path from initial state to goal state Modifications also correct (but unnecessary) for non-negative costs

Optimal General Cost Partitioning for Abstractions I

Variables

For each abstraction α :

General variable Distance^{α}_s for each abstract state *s*, General variable Cost^{α}_o for each operator *o*

Objective

. . .

Maximize $\sum_{\alpha} \text{Distance}_{\alpha(s_l)}^{\alpha}$

Optimal Cost Partitioning for Abstractions II

Subject to

$$\sum\nolimits_{\alpha} \mathsf{Cost}^{\alpha}_{o} \leq \mathit{cost}(o)$$

for all operators o

and for all abstractions $\boldsymbol{\alpha}$

 $\begin{array}{ll} \text{Distance}_{s_{\star}}^{\alpha} \leq 0 & \text{for all abstract goal states } s_{\star} \\ \text{Distance}_{s}^{\alpha} \leq \text{Distance}_{s'}^{\alpha} + \text{Cost}_{o}^{\alpha} \text{ for all alive transition } s \xrightarrow{o} s' \end{array}$

_andmarks 00000000 General Cost Partitioning

Summary •0

Summary

		Summary ⊙●
Summary		

- For abstraction heuristics and disjunctive action landmarks, we know how to determine an optimal cost partitioning, using linear programming.
- Although solving a linear program is possible in polynomial time, the better heuristic guidance often does not outweigh the overhead.
- In constrast to standard (non-negative) cost partitioning, general cost partitioning allows negative operators costs.
- General cost partitioning has the same relevant properties as non-negative cost partitioning but is more powerful.