

Roadmap for this Chapter

- We first introduce a new normal form for delete-free STRIPS tasks that simplifies later definitions.
- We then present a method that computes disjunctive action landmarks for such tasks.

Planning and Optimization

We conclude with the LM-cut heuristic that builds on this method.

M. Helmert, T. Keller (Universität Basel)

November 13, 2019 5 / 25

E3. Landmarks: LM-cut Heuristic

```
Delete-Free STRIPS Planning Task in i-g Form (1)
```

In this chapter, we only consider delete-free STRIPS tasks in a special form:

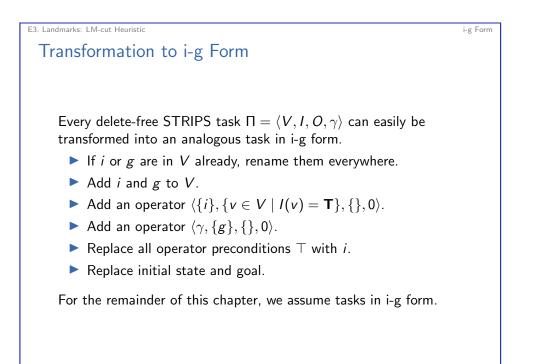
Definition (i-g Form for Delete-free STRIPS)

- A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in i-g form if
- \triangleright V contains atoms *i* and *g*
- linitially exactly *i* is true: I(v) = T iff v = i
- g is the only goal atom: $\gamma = \{g\}$
- Every action has at least one precondition.

E3.1 i-g Form

M. Helmert, T. Keller (Universität Basel)

November 13, 2019 6 / 25



Planning and Optimization

i-g Form

E3. Landmarks: LM-cut Heuristic

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}, I = \{i \mapsto \mathbf{T}\} \cup \{v \mapsto \mathbf{F} \mid v \in V \setminus \{i\}\}, \gamma = g$ and operators

- $\bullet o_{\mathsf{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4\rangle,$
- $\blacktriangleright o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle,$
- $\blacktriangleright o_{\mathsf{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle,$
- $o_{\mathsf{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle$, and
- $\blacktriangleright o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle.$

optimal solution to reach g from i:

- ▶ plan: $\langle o_{blue}, o_{black}, o_{red}, o_{orange} \rangle$
- ▶ cost: 4 + 3 + 2 + 0 = 9 (= $h^+(I)$ because plan is optimal)

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

E3. Landmarks: LM-cut Heuristic

Cut Landmarks

9 / 25

November 13, 2019

i-g Form

Justification Graphs

Definition (Precondition Choice Function) A precondition choice function (pcf) $P: O \rightarrow V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in pre(o)$ for all $o \in O$).

Definition (Justification Graphs)

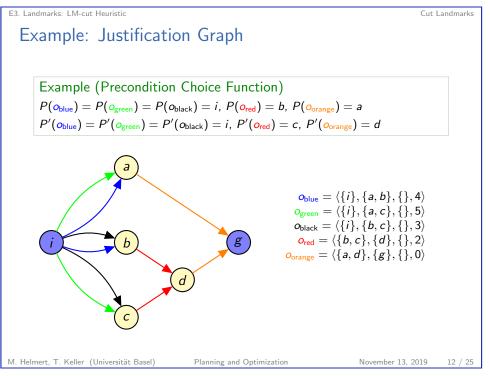
Let *P* be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The justification graph for *P* is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

- \blacktriangleright the vertices are the variables from V, and
- *E* contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in add(o)$.

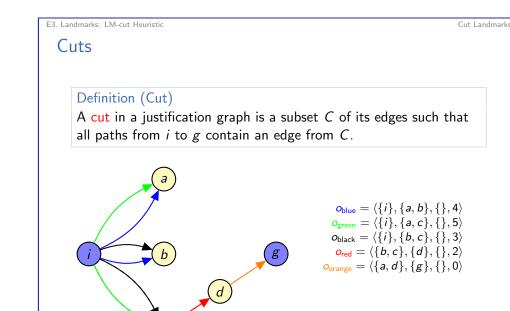
Planning and Optimization

E3.2 Cut Lar	ndmarks		
M. Helmert, T. Keller (Universität Basel)	Planning and Optimization	November 13, 2019	10 / 2

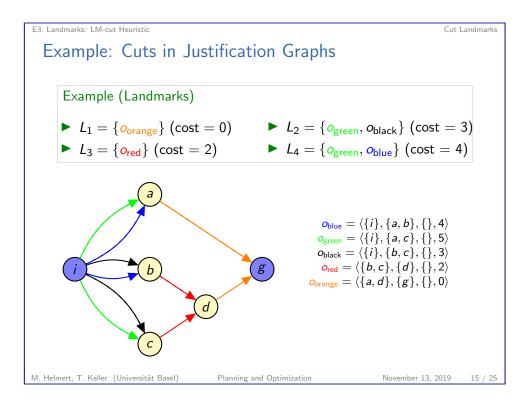
E3. Landmarks: LM-cut Heuristic



11 / 25



M. Helmert, T. Keller (Universität Basel)



Planning and Optimization

November 13, 2019

13 / 25

E3. Landmarks: LM-cut Heuristic

Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks) Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a cut in the justification graph for P. The set of edge labels from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a disjunctive action landmark for I.

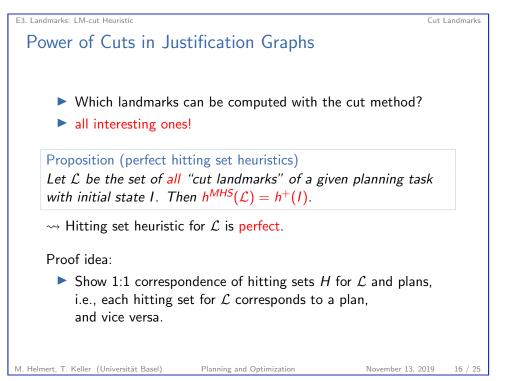
Proof idea:

- The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

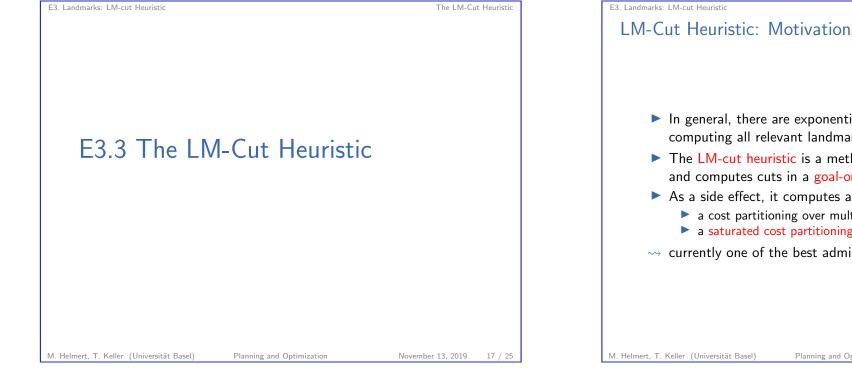
M. Helmert, T. Keller (Universität Basel)

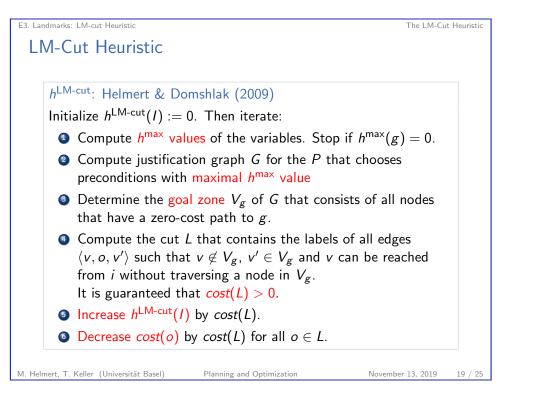
Planning and Optimization

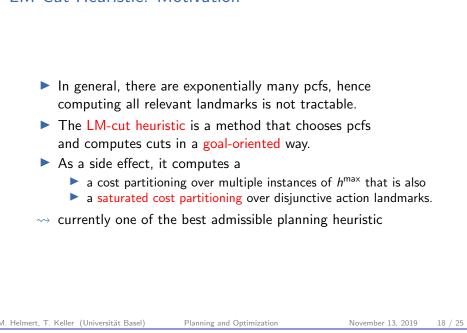
November 13, 2019 14 / 25



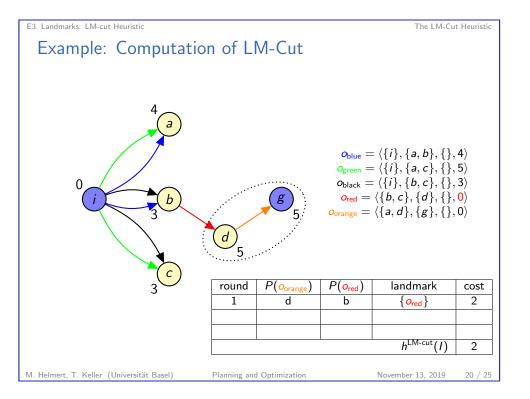
Cut Landmarks

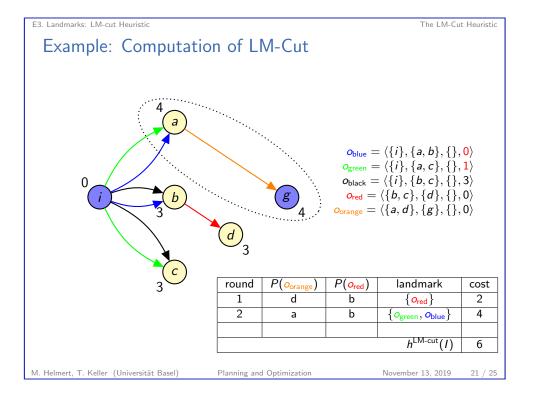






The LM-Cut Heuristic





E3. Landmarks: LM-cut Heuristic

The LM-Cut Heuristic

23 / 25

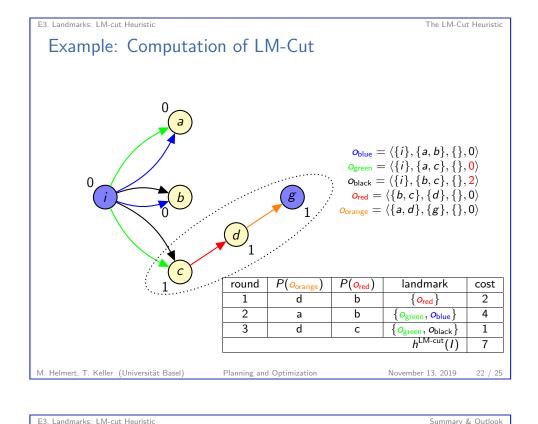
Properties of LM-Cut Heuristic

Theorem

Let $\langle V, I, O, \gamma \rangle$ be a delete-free STRIPS task in *i*-g normal form. The LM-cut heuristic is admissible: $h^{LM-cut}(I) \leq h^*(I)$.

Proof omitted.

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ . Then $h^{\text{LM-cut}}$ is bounded by h^+ .



ndmarks: LM-cut Heuristic		Summary & Ou	tlook
Summary			
Cuts in justific disjunctive act	c <mark>ation graphs</mark> are a general ı ion landmarks.	method to find	
	hitting set over all cut land ic for delete-free planning t		
The LM-cut he based on these	<mark>euristic</mark> is an admissible heu e ideas.	iristic	
1. Helmert, T. Keller (Universität Basel)) Planning and Optimization	November 13, 2019 25	/ 25