

Landmarks

Landmarks

E2.1 Landmarks

M. Helmert, T. Keller (Universität Basel)

November 11, 2019 5 / 35

E2. Landmarks: RTG Landmarks & MHS Heuristic

Definition

Definition (Disjunctive Action Landmark)

Let *s* be a state of planning task $\Pi = \langle V, I, O, \gamma \rangle$.

A disjunctive action landmark for s is a set of operators $L \subseteq O$ such that every label path from s to a goal state contains an operator from L.

Planning and Optimization

The cost of landmark *L* is $cost(L) = min_{o \in L} cost(o)$.

Definition (Fact Landmark)

Let *s* be a state of planning task $\Pi = \langle V, I, O, \gamma \rangle$.

An atomic proposition v = d for $v \in V$ and $d \in dom(v)$ is a fact landmark for s if every state path from s to a goal state contains a state s' with s'(v) = d.

If we talk about landmarks for the initial state, we omit "for I".

Planning and Optimization

7 / 35

E2. Landmarks: RTG Landmarks & MHS Heuristic

Landmarks

Basic Idea: Something that must happen in every solution For example

- some operator must be applied (action landmark)
- some atomic proposition must hold (fact landmark)
- some formula must be true (formula landmark)

 \rightarrow Derive heuristic estimate from this kind of information.

Planning and Optimization

We only consider fact and disjunctive action landmarks.

M. Helmert, T. Keller (Universität Basel)

November 11, 2019 6 / 35

November 11, 2019

Planning and Optimization

 Computing Landmarks How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal, Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Path: Abstractions: What's the Difference Anyway? (ICAPS 200) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. 	Apputing Landmarks ow can we come up with landmarks? Not landmarks are derived from the relaxed task graph: > RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) > LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) > h ^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) /e discuss h ^m landmarks restricted to m = 1 and to STRIPS planning tasks. T. Keller (Universitä Basel) Planning and Optimization Yes: RTG Landmarks MIS Heuristic Sal Landmarks Landmarks	Computing Landmarks How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: • RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) • LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) • h ^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h ^m landmarks restricted to m = 1 and to STRIPS planning tasks. umert, T. Keller (Universitit Basel) Planning and Optimization November 11, 2019 14 ardmarks: RTG Landmarks MIS Heuristic Landmarks Causal Landmarks Definition (Causal Fact Landmark) 14	Computing Landmarks How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Hemert, T. Keller (Universität Basel) Planning and Optimization November 11, 200 1 It Landmarks: RTG Landmarks & MHS Heurist: Landmarks Landmarks Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark if $v \in \gamma$ or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.		
How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: • RHW landmarks: Richter, Helmert & Matthias Westphal, Landmarks Revisited. (AAAI 2008) • LM-Cut: Helmert & Domshlak. Landmarks, Critical Path, Abstractions: What's the Difference Anyway? (ICAPS 200 • h ^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h ^m landmarks restricted to m = 1 and to STRIPS planning tasks.	ow can we come up with landmarks? Nost landmarks are derived from the relaxed task graph: > RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) > LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) > h ^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) /e discuss h ^m landmarks restricted to m = 1 nd to STRIPS planning tasks. T. Keler (Universität Basel) Planning and Optimization November 11, 201 1 rks: RTG Landmarks KMMS Heuristic Landmarks	 How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) <i>h</i>^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss <i>h</i>^m landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. 	How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: PRHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Herenet, T. Keller (Universitä Base) Planning and Optimization Normber 11, 200 1 Landmarks: RTG Landmarks & MHS Heurist: Landmarks Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark \models if $v \in \gamma$ \downarrow or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in mre(o_i)$	omputing Landmarks	
 How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal, Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths Abstractions: What's the Difference Anyway? (ICAPS 20) <i>h</i>^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss <i>h</i>^m landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. 	 ow can we come up with landmarks? lost landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) <i>h</i>^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) <i>e</i> discuss <i>h</i>^m landmarks restricted to <i>m</i> = 1 nd to STRIPS planning tasks. <u>T. Keller (Universität Basel)</u> Planning and Optimization November 11, 2019 1 rks: RTG Landmarks 	 How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) <i>h^m</i> landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss <i>h^m</i> landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. 	How can we come up with landmarks? Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks Landmarks: RTG Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark $if v \in \gamma$ $or if for all goal paths \pi = \langle o_1, \dots, o_n \rangle there is an o_i withv \in pre(o_i)$		
 Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal, Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths Abstractions: What's the Difference Anyway? (ICAPS 20) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. 	 Nost landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) de discuss h^m landmarks restricted to m = 1 nd to STRIPS planning tasks. T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks	 Most landmarks are derived from the relaxed task graph: RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. 	Most landmarks are derived from the relaxed task graph: • RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) • LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) • h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Helmert: T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MMS Heuristic Landmarks Helmert: T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MMS Heuristic Landmarks Helmert: T. Keller (Universität Basel) Planning task. Moster T = $\langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	How can we come up with landmarks?	
 RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths Abstractions: What's the Difference Anyway? (ICAPS 20) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. 	 RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) discuss h^m landmarks restricted to m = 1 nd to STRIPS planning tasks. T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks 	 RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. 	 RHW landmarks: Richter, Helmert & Matthias Westphal. Landmarks Revisited. (AAAI 2008) LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 Landmarks: RTG Landmarks Kandmarks Landmarks Landmarks Landmarks Merse A MHS Heuristic Landmarks Landmarks Definition (Causal Fact Landmark) Let Π = ⟨V, I, O, γ⟩ be a STRIPS planning task. An atomic proposition v = T for v ∈ V is a causal fact landmark if v ∈ γ or if for all goal paths π = ⟨o₁,, o_n⟩ there is an o_i with v ∈ pre(o_i) 	Most landmarks are derived from the relaxed	l task graph:
 LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths Abstractions: What's the Difference Anyway? (ICAPS 20 h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. 	 LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) de discuss h^m landmarks restricted to m = 1 nd to STRIPS planning tasks. T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks 	 LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to m = 1 and to STRIPS planning tasks. elmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks Causal Landmarks Definition (Causal Fact Landmark) 	• LM-Cut: Helmert & Domshlak. Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? (ICAPS 2009) • h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks to Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	 RHW landmarks: Richter, Helmert & N Landmarks Revisited. (AAAI 2008) 	latthias Westphal.
 <i>h^m</i> landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss <i>h^m</i> landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2 	 h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) /e discuss h^m landmarks restricted to m = 1 nd to STRIPS planning tasks. T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks from sal Landmarks 	 <i>h^m</i> landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss <i>h^m</i> landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. elmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark) 	• h^m landmarks: Keyder, Richter & Helmert: Sound and Complete Landmarks for And/Or Graphs (ECAI 2010) We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in ore(o_i)$	LM-Cut: Helmert & Domshlak. Landma Abstractions: What's the Difference An	arks, Critical Paths and yway? (ICAPS 2009)
We discuss <i>h^m</i> landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2 Landmarks: RTG Landmarks & MHS Heuristic Land	Ve discuss h ^m landmarks restricted to $m = 1$ nd to STRIPS planning tasks. T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks from sal Landmarks Landmarks	We discuss <i>h^m</i> landmarks restricted to <i>m</i> = 1 and to STRIPS planning tasks. <u>elmert, T. Keller (Universität Basel)</u> Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	We discuss h^m landmarks restricted to $m = 1$ and to STRIPS planning tasks. Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks Causal Landmarks Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark \models if $v \in \gamma$ \models or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	 h^m landmarks: Keyder, Richter & Helm Complete Landmarks for And/Or Graph 	ert: Sound and s (ECAI 2010)
Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2 Landmarks: RTG Landmarks & MHS Heuristic Land	T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks from sal Landmarks	and to STRIFS planning tasks. elmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	Interview Initial conductory November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Landmarks Landmarks Landmarks Initial conductory Landmarks Landmarks From Control conductory Landmarks Landmarks From Control control conductory Landmarks Landmarks Landmarks Control contrelevel contrelevel control contro control control cont	We discuss h^m landmarks restricted to $m =$ and to STRIPS planning tasks	1
Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2 Landmarks: RTG Landmarks & MHS Heuristic Landmarks	T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks from sal Landmarks	elmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark \models if $v \in \gamma$ \models or if for all goal paths $\pi = \langle o_1, \ldots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	and to STRIPS planning tasks.	
Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2 Landmarks: RTG Landmarks & MHS Heuristic Land	T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks from sal Landmarks	elmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Causal Landmarks & MHS Heuristic Landmarks from Causal Landmarks Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \ldots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.		
Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2 Landmarks: RTG Landmarks & MHS Heuristic Land	T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 rks: RTG Landmarks & MHS Heuristic Landmarks from sal Landmarks	elmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 14 andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	Helmert, T. Keller (Universität Basel) Planning and Optimization November 11, 2019 1 Landmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark \models if $v \in \gamma$ \models or if for all goal paths $\pi = \langle o_1, \ldots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.		
Landmarks: RTG Landmarks & MHS Heuristic Land	rks: RTG Landmarks & MHS Heuristic Landmarks from	andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	Landmarks: RTG Landmarks & MHS Heuristic Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark \models if $v \in \gamma$ \models or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.		
Landmarks: RTG Landmarks & MHS Heuristic Land	rks: RTG Landmarks & MHS Heuristic Landmarks from	andmarks: RTG Landmarks & MHS Heuristic Landmarks from Causal Landmarks Definition (Causal Fact Landmark)	Landmarks: RTG Landmarks & MHS Heuristic Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = T$ for $v \in V$ is a causal fact landmark \models if $v \in \gamma$ \models or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	lmert, T. Keller (Universität Basel) Planning and Optimization	November 11, 2019 14
	sal Landmarks	Causal Landmarks Definition (Causal Fact Landmark)	Causal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark \blacktriangleright if $v \in \gamma$ \blacktriangleright or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	lmert, T. Keller (Universität Basel) Planning and Optimization	November 11, 2019 14
Causal Landmarks		Definition (Causal Fact Landmark)	Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark \blacktriangleright if $v \in \gamma$ \blacktriangleright or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization Indmarks: RTG Landmarks & MHS Heuristic	November 11, 2019 14 Landmarks from
		Definition (Causal Fact Landmark)	Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization Indmarks: RTG Landmarks & MHS Heuristic ausal Landmarks	November 11, 2019 14 Landmarks from
		Definition (Causal Fact Landmark)	Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$	Imert, T. Keller (Universität Basel) Planning and Optimization undmarks: RTG Landmarks & MHS Heuristic ausal Landmarks	November 11, 2019 14 Landmarks from
		Definition (Causal Fact Landmark)	Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization Indmarks: RTG Landmarks & MHS Heuristic ausal Landmarks	November 11, 2019 14
		Definition (Causal Fact Landmark)	Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark \blacktriangleright if $v \in \gamma$ \blacktriangleright or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization Indmarks: RTG Landmarks & MHS Heuristic ausal Landmarks	November 11, 2019 14 Landmarks from
	efinition (Causal Fact Landmark)		Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization andmarks: RTG Landmarks & MHS Heuristic ausal Landmarks	November 11, 2019 14
Definition (Causal Fact Landmark)		Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.	An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$ • or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization Indmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark)	November 11, 2019 14 Landmarks from
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.	et $\Pi = \langle V, I, O, \gamma angle$ be a STRIPS planning task.		 if v ∈ γ or if for all goal paths π = ⟨o₁,, o_n⟩ there is an o_i with v ∈ pre(o_i). 	Imert, T. Keller (Universität Basel) Planning and Optimization andmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning t	November 11, 2019 14 Landmarks from
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landm	et $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. n atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark	An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark	• or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Indmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning to An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a	November 11, 2019 14 Landmarks from task. causal fact landmark
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landment of $v \in \gamma$	Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. In atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark In if $v \in \gamma$	An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$		Imert, T. Keller (Universität Basel) Planning and Optimization Indmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning to An atomic proposition $v = T$ for $v \in V$ is a If $v \in \gamma$	November 11, 2019 14 Landmarks from task. causal fact landmark
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.	et $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.		▶ if $v \in \gamma$ ▶ or if for all goal paths $\pi = \langle o_1, \dots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Planning and Optimization andmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning t	November 11, 2019 14 Landmarks from
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.	et $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task.		 if v ∈ γ or if for all goal paths π = ⟨o₁,, o_n⟩ there is an o_i with v ∈ pre(o_i). 	Imert, T. Keller (Universität Basel) Planning and Optimization andmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning to	November 11, 2019 14 Landmarks from
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark	et $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. n atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark	An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark	• or if for all goal paths $\pi = \langle o_1, \ldots, o_n \rangle$ there is an o_i with $v \in pre(o_i)$.	Imert, T. Keller (Universität Basel) Andmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning to An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a	November 11, 2019 14 Landmarks from task. causal fact landmark
Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landment of $v \in \gamma$	Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning task. In atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark Implies if $v \in \gamma$	An atomic proposition $v = \mathbf{T}$ for $v \in V$ is a causal fact landmark • if $v \in \gamma$		Imert, T. Keller (Universität Basel) Planning and Optimization undmarks: RTG Landmarks & MHS Heuristic ausal Landmarks Definition (Causal Fact Landmark) Let $\Pi = \langle V, I, O, \gamma \rangle$ be a STRIPS planning to An atomic proposition $v = T$ for $v \in V$ is a \blacktriangleright if $v \in \gamma$	Landmarks from

Causal Landmarks: Example

Example (Causal Landmarks) Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, \gamma \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\},$$

$$o_1 = \langle \{a\}, \{c, d, e\}, \{b\} \rangle,$$

$$o_2 = \langle \{d, e\}, \{f\}, \{a\} \rangle, \text{ and}$$

$$\gamma = \{e, f\}.$$

Planning and Optimization

Single solution: $\langle o_1, o_2 \rangle$

- All variables are fact landmarks for the initial state.
- ► Only *a*, *d*, *e* and *f* are causal landmarks.

M. Helmert, T. Keller (Universität Basel)

November 11, 2019

17 / 35

Landmarks from RTGs

Landmarks from RTGs

E2. Landmarks: RTG Landmarks & MHS Heuristic

Planning and Optimization

Planning and Optimization

Landmarks from RTGs

Characterizing Equation System

Theorem

Let $G = \langle N, A, type \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{\langle n,n' \rangle \in A} LM(n') \quad type(n) = \lor$$
$$LM(n) = \{n\} \cup \bigcup_{\langle n,n' \rangle \in A} LM(n') \quad type(n) = \land$$

The equation system has a unique maximal solution (maximal with regard to set inclusion), and for this solution it holds that

```
n' \in LM(n) iff n' is a landmark for reaching n in G.
```

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

November 11, 2019 21 / 35

E2. Landmarks: RTG Landmarks & MHS Heuristic

Landmarks from RTGs

Computation of Maximal Solution

Theorem

Let $G = \langle N, A, type \rangle$ be an AND/OR graph. Consider the following system of equations:

$$LM(n) = \{n\} \cup \bigcap_{\langle n,n' \rangle \in A} LM(n') \quad type(n) = \lor$$
$$LM(n) = \{n\} \cup \bigcup_{\langle n,n' \rangle \in A} LM(n') \quad type(n) = \land$$

The equation system has a unique maximal solution (maximal with regard to set inclusion).

Computation: Initialize landmark sets as $LM(n) = N_{and} \cup N_{or}$ and apply equations as update rules until fixpoint.

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

November 11, 2019 22 / 35

Computed RTG Landmarks: Example

Example (Computed RTG Landmarks) Consider a STRIPS planning task $\langle V, I, \{o_1, o_2\}, \gamma \rangle$ with

$$V = \{a, b, c, d, e, f\},$$

$$I = \{a \mapsto \mathbf{T}, b \mapsto \mathbf{T}, c \mapsto \mathbf{F}, d \mapsto \mathbf{F}, e \mapsto \mathbf{T}, f \mapsto \mathbf{F}\},$$

$$o_1 = \langle \{a\}, \{c, d, e\}, \{b\} \rangle,$$

$$o_2 = \langle \{d, e\}, \{f\}, \{a\} \rangle, \text{ and}$$

$$\gamma = \{e, f\}.$$

•
$$LM(n_G) = \{a, d, e, f, I, G, o_1, o_2\}$$

- a, d, e, and f are causal fact landmarks of Π^+ .
- $\{o_1\}$ and $\{o_2\}$ are disjunctive action landmarks of Π^+ .

Planning and Optimization

```
M. Helmert, T. Keller (Universität Basel)
```

```
November 11, 2019
```

E2. Landmarks: RTG Landmarks & MHS Heuristic

Minimum Hitting Set Heuristic

25 / 35

Landmarks from RTGs

E2.3 Minimum Hitting Set Heuristic

```
E2. Landmarks: RTG Landmarks & MHS Heuristic
```

Landmarks from RTGs

Landmarks of Π^+ Are Landmarks of Π

Theorem

Let Π be a STRIPS planning task.

All fact landmarks of Π^+ are fact landmarks of Π and all disjunctive action landmarks of Π^+ are disjunctive action landmarks of Π .

Proof.

Let *L* be a disjunctive action landmark of Π^+ and π be a plan for Π . Then π is also a plan for Π^+ and, thus, π contains an operator from *L*.

Let f be a fact landmark of Π^+ . If f is already true in the initial state, then it is also a landmark of Π . Otherwise, every plan for Π^+ contains an operator that adds f and the set of all these operators is a disjunctive action landmark of Π^+ . Therefore, also each plan of Π contains such an operator, making f a fact landmark of Π . \Box

Planning and Optimizatio

M. Helmert, T. Keller (Universität Basel)

November 11, 2019 26 / 35

Example $X = \{o_1, o_2, o_3, o_4\}$ $\mathcal{F} = \{\{o_4\}, \{o_1, o_2\}, \{o_1, o_3\}, \{o_2, o_3\}\}$ $c(o_1) = 3, c(o_2) = 4, c(o_3) = 5, c(o_4) = 0$

What is minimum hitting set?

Solution: $\{o_1, o_2, o_4\}$ with cost 3 + 4 + 0 = 7

instance of minimum hitting set

Proposition (Hitting Set Heuristic is Admissible)

Then $h^{MHS}(\mathcal{L})$ is an admissible estimate for s.

Let \mathcal{L} be a set of disjunctive action landmarks for state s.

Let \mathcal{L} be a set of disjunctive action landmarks. The hitting set

heuristic $h^{\text{MHS}}(\mathcal{L})$ is defined as the cost of a minimum hitting set

Definition (Hitting Set Heuristic)

for \mathcal{L} with c(o) = cost(o).

31 / 35

E2. Landmarks: RTG Landmarks & MHS Heuristic

Minimum Hitting Set Heuristic

November 11, 2019

33 / 35

Summarv

Hitting Set Heuristic: Discussion

- The hitting set heuristic is the best possible heuristic that only uses the given information...
- ▶ ... but is NP-hard to compute.
- \blacktriangleright \rightsquigarrow Use approximations that can be efficiently computed.
 - \Rightarrow LP-relaxation, cost partitioning (both discussed later)

Planning and Optimization

E2. Landmarks: RTG Landmarks & MHS Heuristic

M. Helmert, T. Keller (Universität Basel)

Summary

- Fcat landmark: atomic proposition that is true in each state path to a goal
- Disjunctive action landmark: set L of operators such that every plan uses some operator from L
- Relaxed task graphs allows efficient computation of landmarks
- Hitting sets yield the most accurate heuristic for a given set of disjunctive action landmarks
- Computation of minimal hitting set is NP-hard

E2. Landmarks: RTG Landmarks & MHS Heuristic

E2.4 Summary

M. Helmert, T. Keller (Universität Basel)

Planning and Optimization

November 11, 2019 34 / 35

Summarv