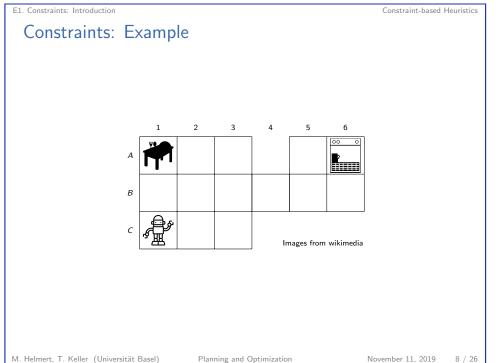
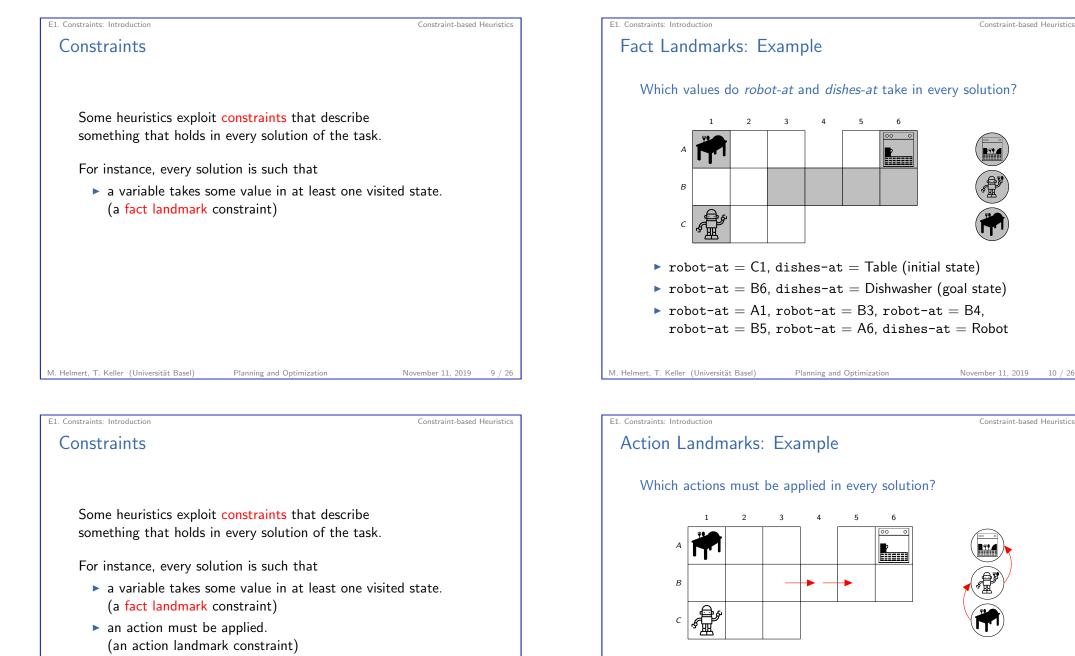


General Procedure for Solve a simplified version	0		
Major ideas for heurist	ics in the planning literat	ture:	
 delete relaxation 			
abstraction			
Iandmarks			
 critical paths 			
network flows			
potential heuristic	2		
	ows and potential heurist e specified for a planning		
nert. T. Keller (Universität Basel)	Planning and Optimization	November 11, 2019	6 / 2



Constraint-based Heuristics



- pickup
- load
- move-B3-B4
- move-B4-B5

10 / 26

E1. Constraints: Introduction

Constraint-based Heuristics

Constraints

Some heuristics exploit constraints that describe something that holds in every solution of the task.

For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- an action must be applied.
 (an action landmark constraint)
- at least one action from a set of actions must be applied.
 (a disjunctive action landmark constraint)

Planning and Optimization

M. Helmert, T. Keller (Universität Basel)

Constraint-based Heuristics

13 / 26

November 11, 2019

Constraints

E1. Constraints: Introduction

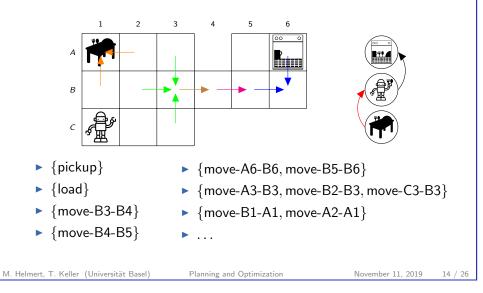
Some heuristics exploit constraints that describe something that holds in every solution of the task.

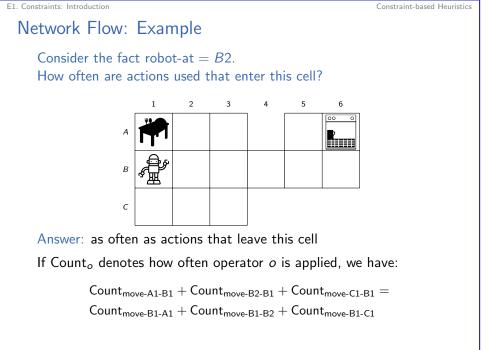
For instance, every solution is such that

- a variable takes some value in at least one visited state.
 (a fact landmark constraint)
- at least one action from a set of actions must be applied.
 (a disjunctive action landmark constraint)
- fact consumption and production is "balanced".
 (a network flow constraint)

Disjunctive Action Landmarks: Example

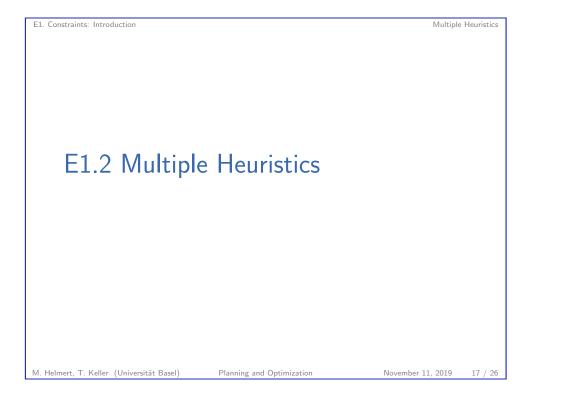
Which set of actions is such that at least one must be applied?





Planning and Optimization

Constraint-based Heuristics



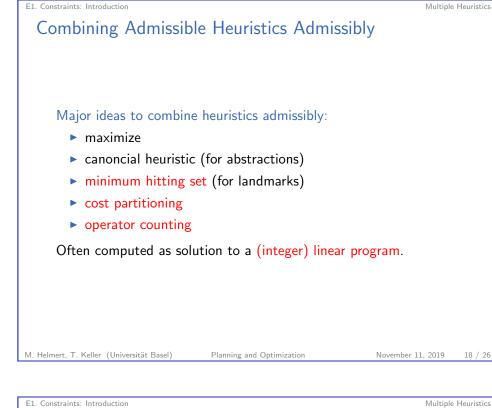
E1. Constraints: Introduction

Multiple Heuristics

Combining Heuristics Admissibly: Example

Example Consider an FDR planning task $\langle V, I, \{o_1, o_2, o_3, o_4\}, \gamma \rangle$ with $V = \{v_1, v_2, v_3\}$ with $dom(v_1) = \{A, B\}$ and $dom(v_2) = dom(v_3) = \{A, B, C\}, I = \{v_1 \mapsto A, v_2 \mapsto A, v_3 \mapsto A\},$ $o_1 = \langle v_1 = A, v_1 := B, 1 \rangle$ $o_2 = \langle v_2 = A \land v_3 = A, v_2 := B \land v_3 := B, 1 \rangle$ $o_3 = \langle v_2 = B, v_2 := C, 1 \rangle$ $o_4 = \langle v_3 = B, v_3 := C, 1 \rangle$ and $\gamma = (v_1 = B) \land (v_2 = C) \land (v_3 = C).$ Let C be the pattern collection that contains all atomic projections. What is the canonical heuristic function h^C ? Answer: Let $h_i := h^{v_i}$. Then $h^C = \max\{h_1 + h_2, h_1 + h_3\}$.

Planning and Optimization



Reminder: Orthogonality and Additivity

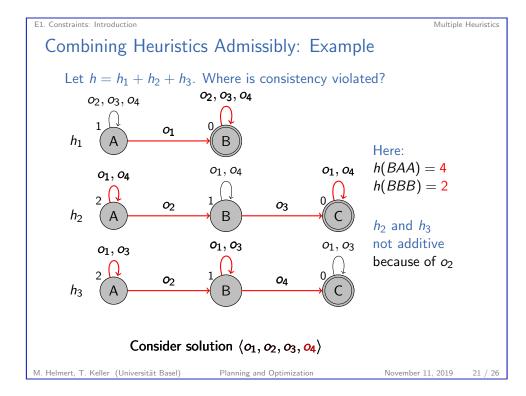
Why can we add h_1 and h_2 (h_1 and h_3) admissibly?

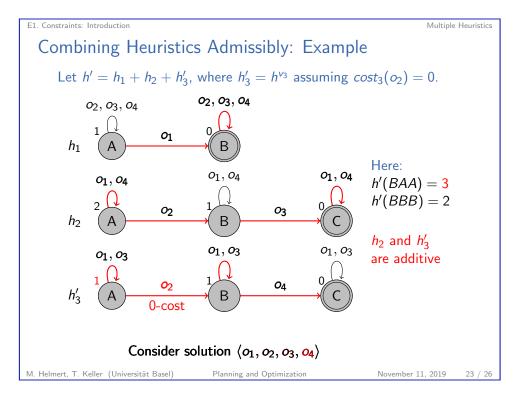
Theorem (Additivity for Orthogonal Abstractions) Let $h^{\alpha_1}, \ldots, h^{\alpha_n}$ be abstraction heuristics of the same transition system such that α_i and α_j are orthogonal for all $i \neq j$.

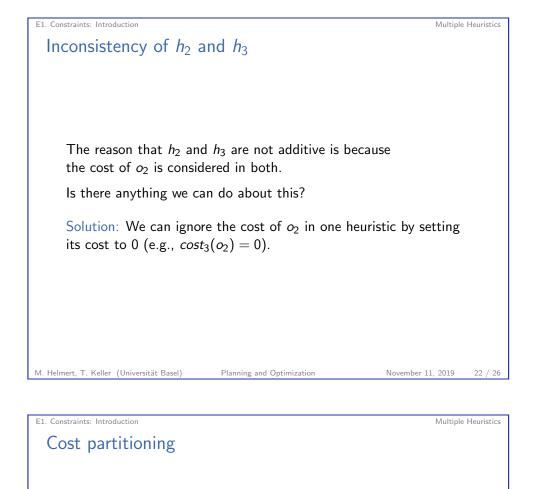
Then $\sum_{i=1}^{n} h^{\alpha_i}$ is a safe, goal-aware, admissible and consistent heuristic for Π .

Consistency proof exploits that every concrete transition induces state-changing transition in at most one abstraction.

19 / 26







Using the cost of every operator only in one heuristic is called a zero-one cost partitioning.

More generally, heuristics are additive if all operator costs are distributed in a way that the sum of the individual costs is no larger than the cost of the operator.

This can also be expressed as a constraint, the cost partitioning constraint:

$$\sum_{i=1}^n \mathit{cost}_i(o) \leq \mathit{cost}(o) ext{ for all } o \in O$$

(more details later)

Planning and Optimization

